cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321280 Number T(n,k) of permutations p of [n] with exactly k descents such that the up-down signature of p has nonnegative partial sums; triangle T(n,k), n>=0, 0<=k<=max(0,floor((n-1)/2)), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 8, 1, 22, 22, 1, 52, 172, 1, 114, 856, 604, 1, 240, 3488, 7296, 1, 494, 12746, 54746, 31238, 1, 1004, 43628, 330068, 518324, 1, 2026, 143244, 1756878, 5300418, 2620708, 1, 4072, 457536, 8641800, 43235304, 55717312, 1, 8166, 1434318, 40298572, 309074508, 728888188, 325024572
Offset: 0

Views

Author

Alois P. Heinz, Nov 01 2018

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  1;
  1;
  1,     2;
  1,     8;
  1,    22,      22;
  1,    52,     172;
  1,   114,     856,       604;
  1,   240,    3488,      7296;
  1,   494,   12746,     54746,      31238;
  1,  1004,   43628,    330068,     518324;
  1,  2026,  143244,   1756878,    5300418,    2620708;
  1,  4072,  457536,   8641800,   43235304,   55717312;
  1,  8166, 1434318,  40298572,  309074508,  728888188,  325024572;
  1, 16356, 4438540, 180969752, 2026885824, 7589067592, 8460090160;
  ...
		

Crossrefs

Columns k=0-3 give: A000012, A005803 (for n>0), A321268, A321269.
Row sums give A000246.
T(2n+1,n) gives A177042.
T(2n+2,n) gives A303285(n+1).

Programs

  • Maple
    b:= proc(u, o, c) option remember; `if`(c<0, 0, `if`(u+o=0, 1/x,
           add(expand(x*b(u-j, o-1+j, c-1)), j=1..u)+
           add(b(u+j-1, o-j, c+1), j=1..o)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(`if`(n=0, 1, b(n, 0, 1))):
    seq(T(n), n=0..14);
  • Mathematica
    b[u_, o_, c_] := b[u, o, c] = If[c < 0, 0, If[u + o == 0, 1/x, Sum[Expand[ x*b[u - j, o - 1 + j, c - 1]], {j, 1, u}] + Sum[b[u + j - 1, o - j, c + 1], {j, 1, o}]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ If[n == 0, 1, b[n, 0, 1]]];
    Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Dec 08 2018, after Alois P. Heinz *)