A321280 Number T(n,k) of permutations p of [n] with exactly k descents such that the up-down signature of p has nonnegative partial sums; triangle T(n,k), n>=0, 0<=k<=max(0,floor((n-1)/2)), read by rows.
1, 1, 1, 1, 2, 1, 8, 1, 22, 22, 1, 52, 172, 1, 114, 856, 604, 1, 240, 3488, 7296, 1, 494, 12746, 54746, 31238, 1, 1004, 43628, 330068, 518324, 1, 2026, 143244, 1756878, 5300418, 2620708, 1, 4072, 457536, 8641800, 43235304, 55717312, 1, 8166, 1434318, 40298572, 309074508, 728888188, 325024572
Offset: 0
Examples
Triangle T(n,k) begins: 1; 1; 1; 1, 2; 1, 8; 1, 22, 22; 1, 52, 172; 1, 114, 856, 604; 1, 240, 3488, 7296; 1, 494, 12746, 54746, 31238; 1, 1004, 43628, 330068, 518324; 1, 2026, 143244, 1756878, 5300418, 2620708; 1, 4072, 457536, 8641800, 43235304, 55717312; 1, 8166, 1434318, 40298572, 309074508, 728888188, 325024572; 1, 16356, 4438540, 180969752, 2026885824, 7589067592, 8460090160; ...
Links
- Alois P. Heinz, Rows n = 0..100, flattened
- S. Spiro, Ballot Permutations, Odd Order Permutations, and a New Permutation Statistic, arXiv preprint arXiv:1810.00993 [math.CO], 2018.
- David G. L. Wang, T. Zhao, The peak and descent statistics over ballot permutations, arXiv:2009.05973 [math.CO], 2020.
Crossrefs
Programs
-
Maple
b:= proc(u, o, c) option remember; `if`(c<0, 0, `if`(u+o=0, 1/x, add(expand(x*b(u-j, o-1+j, c-1)), j=1..u)+ add(b(u+j-1, o-j, c+1), j=1..o))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(`if`(n=0, 1, b(n, 0, 1))): seq(T(n), n=0..14);
-
Mathematica
b[u_, o_, c_] := b[u, o, c] = If[c < 0, 0, If[u + o == 0, 1/x, Sum[Expand[ x*b[u - j, o - 1 + j, c - 1]], {j, 1, u}] + Sum[b[u + j - 1, o - j, c + 1], {j, 1, o}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ If[n == 0, 1, b[n, 0, 1]]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Dec 08 2018, after Alois P. Heinz *)