A321292 Smallest positive number for which the 5th power cannot be written as sum of distinct 5th powers of any subset of previous terms.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 26, 27, 28, 30, 37, 43, 44, 55, 57, 64, 77, 82, 90, 97, 112, 116, 119, 154, 156, 178, 202, 227, 269, 309, 335, 371, 397, 442, 516, 604, 643, 722, 774, 815, 1000, 1115, 1308, 1503
Offset: 1
Keywords
Examples
The smallest number > 0 that is not in the sequence is 12, because 12^5 = 4^5 + 5^5 + 6^5 + 7^5 + 9^5 + 11^5.
Links
- Bert Dobbelaere, Table of n, a(n) for n = 1..150
- Wikipedia, Sum-free sequence
Programs
-
Python
def findSum(nopt, tgt, a, smax, pwr): if nopt==0: return [] if tgt==0 else None if tgt<0 or tgt>smax[nopt-1]: return None rv=findSum(nopt-1, tgt - a[nopt-1]**pwr, a, smax, pwr) if rv!=None: rv.append(a[nopt-1]) else: rv=findSum(nopt-1, tgt, a, smax, pwr) return rv def A321292(n): POWER=5 ; x=0 ; a=[] ; smax=[] ; sumpwr=0 while len(a)
Comments