A321293 Smallest positive number for which the 6th power cannot be written as sum of distinct 6th powers of any subset of previous terms.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 29, 30, 31, 33, 34, 42, 43, 51, 57, 60, 61, 71, 74, 88, 91, 99, 112, 116, 117, 132, 152, 153, 176, 203, 228, 244, 256, 281, 293, 345, 392, 439, 441, 529, 594, 627
Offset: 1
Keywords
Examples
The smallest number > 0 that is not in the sequence is 25, because 25^6 = 1^6 + 2^6 + 3^6 + 5^6 + 6^6 + 7^6 + 8^6 + 9^6 + 10^6 + 12^6 + 13^6 + 15^6 + 16^6 + 17^6 + 18^6 + 23^6.
Links
- Bert Dobbelaere, Table of n, a(n) for n = 1..150
- Wikipedia, Sum-free sequence
Programs
-
Python
def findSum(nopt, tgt, a, smax, pwr): if nopt==0: return [] if tgt==0 else None if tgt<0 or tgt>smax[nopt-1]: return None rv=findSum(nopt-1, tgt - a[nopt-1]**pwr, a, smax, pwr) if rv!=None: rv.append(a[nopt-1]) else: rv=findSum(nopt-1, tgt, a, smax, pwr) return rv def A321293(n): POWER=6 ; x=0 ; a=[] ; smax=[] ; sumpwr=0 while len(a)
Comments