cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321313 Number of permutations of [n] with equal lengths of the longest increasing subsequence and the longest decreasing subsequence.

Original entry on oeis.org

1, 0, 4, 4, 36, 256, 1282, 9864, 99976, 970528, 9702848, 113092200, 1500063930, 20985500212, 305177475748, 4733232671056, 79461918315024, 1427464201289584, 26955955609799728, 531536672155429792, 10980840178654738496, 238597651836121062824, 5446220581860028853936
Offset: 1

Views

Author

Alois P. Heinz, Nov 03 2018

Keywords

Crossrefs

Column k=0 of A321316.

Programs

  • Maple
    h:= l-> (n-> add(i, i=l)!/mul(mul(1+l[i]-j+add(`if`(j>
        l[k], 0, 1), k=i+1..n), j=1..l[i]), i=1..n))(nops(l)):
    f:= l-> `if`(l[1]=nops(l), h(l)^2, 0):
    g:= (n, i, l)-> `if`(n=0 or i=1, f([l[], 1$n]),
         g(n, i-1, l) +g(n-i, min(i, n-i), [l[], i])):
    a:= n-> g(n$2, []):
    seq(a(n), n=1..23);
  • Mathematica
    h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[j > l[[k]], 0, 1], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
    f[l_] := If[l[[1]] == Length[l], h[l]^2, 0];
    g[n_, i_, l_] := If[n == 0 || i == 1, f[Join[l, Table[1, {n}]]], g[n, i - 1, l] + g[n - i, Min[i, n - i], Append[l, i]]];
    a[n_] := g[n, n, {}];
    Array[a, 25] (* Jean-François Alcover, Aug 31 2021, after Alois P. Heinz *)

Formula

a(n) = n! - 2 * A321314(n).
a(n) = A321315(n) - A321314(n).
a(n) = A321316(n,0).