A321313 Number of permutations of [n] with equal lengths of the longest increasing subsequence and the longest decreasing subsequence.
1, 0, 4, 4, 36, 256, 1282, 9864, 99976, 970528, 9702848, 113092200, 1500063930, 20985500212, 305177475748, 4733232671056, 79461918315024, 1427464201289584, 26955955609799728, 531536672155429792, 10980840178654738496, 238597651836121062824, 5446220581860028853936
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..80
- Wikipedia, Longest increasing subsequence
Programs
-
Maple
h:= l-> (n-> add(i, i=l)!/mul(mul(1+l[i]-j+add(`if`(j> l[k], 0, 1), k=i+1..n), j=1..l[i]), i=1..n))(nops(l)): f:= l-> `if`(l[1]=nops(l), h(l)^2, 0): g:= (n, i, l)-> `if`(n=0 or i=1, f([l[], 1$n]), g(n, i-1, l) +g(n-i, min(i, n-i), [l[], i])): a:= n-> g(n$2, []): seq(a(n), n=1..23);
-
Mathematica
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[j > l[[k]], 0, 1], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; f[l_] := If[l[[1]] == Length[l], h[l]^2, 0]; g[n_, i_, l_] := If[n == 0 || i == 1, f[Join[l, Table[1, {n}]]], g[n, i - 1, l] + g[n - i, Min[i, n - i], Append[l, i]]]; a[n_] := g[n, n, {}]; Array[a, 25] (* Jean-François Alcover, Aug 31 2021, after Alois P. Heinz *)