cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321314 Number of permutations of [n] where the length of the longest increasing subsequence is larger than the length of the longest decreasing subsequence.

Original entry on oeis.org

0, 1, 1, 10, 42, 232, 1879, 15228, 131452, 1329136, 15106976, 182954700, 2363478435, 33096395494, 501248446126, 8094778608472, 138112754890488, 2487454752219208, 47344572399516136, 950682668010605104, 20055050996527350752, 442701537970743308588, 10202898078512473893032
Offset: 1

Views

Author

Alois P. Heinz, Nov 03 2018

Keywords

Crossrefs

Programs

  • Maple
    h:= l-> (n-> add(i, i=l)!/mul(mul(1+l[i]-j+add(`if`(j>
        l[k], 0, 1), k=i+1..n), j=1..l[i]), i=1..n))(nops(l)):
    f:= l-> `if`(l[1] `if`(n=0 or i=1, f([l[], 1$n]),
         g(n, i-1, l) +g(n-i, min(i, n-i), [l[], i])):
    a:= n-> g(n$2, []):
    seq(a(n), n=1..23);
  • Mathematica
    h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[j > l[[k]], 0, 1], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
    f[l_] := If[l[[1]] < Length[l], h[l]^2, 0];
    g[n_, i_, l_] := If[n == 0 || i == 1, f[Join[l, Table[1, {n}]]], g[n, i - 1, l] + g[n - i, Min[i, n - i], Append[l, i]]];
    a[n_] := g[n, n, {}];
    Array[a, 25] (* Jean-François Alcover, Aug 31 2021, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=1..n-1} A321316(n,k).
a(n) = (n! - A321313(n))/2.
a(n) = A321315(n) - A321313(n).