A321315 Number of permutations of [n] where the length of the longest increasing subsequence is larger than or equal to the length of the longest decreasing subsequence.
1, 1, 5, 14, 78, 488, 3161, 25092, 231428, 2299664, 24809824, 296046900, 3863542365, 54081895706, 806425921874, 12828011279528, 217574673205512, 3914918953508792, 74300528009315864, 1482219340166034896, 31035891175182089248, 681299189806864371412, 15649118660372502746968
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..80
- Wikipedia, Longest increasing subsequence
Programs
-
Maple
h:= l-> (n-> add(i, i=l)!/mul(mul(1+l[i]-j+add(`if`(j> l[k], 0, 1), k=i+1..n), j=1..l[i]), i=1..n))(nops(l)): f:= l-> `if`(l[1]>=nops(l), h(l)^2, 0): g:= (n, i, l)-> `if`(n=0 or i=1, f([l[], 1$n]), g(n, i-1, l) +g(n-i, min(i, n-i), [l[], i])): a:= n-> g(n$2, []): seq(a(n), n=1..23);