A321316 Number T(n,k) of permutations of [n] whose difference between the length of the longest increasing subsequence and the length of the longest decreasing subsequence equals k; triangle T(n,k), n >= 1, 1-n <= k <= n-1, read by rows.
1, 1, 0, 1, 1, 0, 4, 0, 1, 1, 0, 9, 4, 9, 0, 1, 1, 0, 16, 25, 36, 25, 16, 0, 1, 1, 0, 25, 81, 125, 256, 125, 81, 25, 0, 1, 1, 0, 36, 196, 421, 1225, 1282, 1225, 421, 196, 36, 0, 1, 1, 0, 49, 400, 1225, 4292, 9261, 9864, 9261, 4292, 1225, 400, 49, 0, 1
Offset: 1
Examples
: 1 ; : 1, 0, 1 ; : 1, 0, 4, 0, 1 ; : 1, 0, 9, 4, 9, 0, 1 ; : 1, 0, 16, 25, 36, 25, 16, 0, 1 ; : 1, 0, 25, 81, 125, 256, 125, 81, 25, 0, 1 ; : 1, 0, 36, 196, 421, 1225, 1282, 1225, 421, 196, 36, 0, 1 ;
Links
- Alois P. Heinz, Rows n = 1..80, flattened
- Wikipedia, Longest increasing subsequence
Crossrefs
Programs
-
Maple
h:= l-> (n-> add(i, i=l)!/mul(mul(1+l[i]-j+add(`if`(j> l[k], 0, 1), k=i+1..n), j=1..l[i]), i=1..n))(nops(l)): f:= l-> h(l)^2*x^(l[1]-nops(l)) : g:= (n, i, l)-> `if`(n=0 or i=1, f([l[], 1$n]), g(n, i-1, l) +g(n-i, min(i, n-i), [l[], i])): b:= proc(n) option remember; g(n$2, []) end: T:= (n, k)-> coeff(b(n), x, k): seq(seq(T(n, k), k=1-n..n-1), n=1..10);
-
Mathematica
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[j > l[[k]], 0, 1], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; f[l_] := h[l]^2*x^(l[[1]] - Length[l]); g[n_, i_, l_] := If[n == 0 || i == 1, f[Join[l, Table[1, {n}]]], g[n, i - 1, l] + g[n - i, Min[i, n - i], Append[l, i]]]; b[n_] := b[n] = g[n, n, {}]; T[n_, k_] := Coefficient[b[n], x, k]; Table[Table[T[n, k], {k, 1 - n, n - 1}], {n, 1, 10}] // Flatten (* Jean-François Alcover, Feb 27 2021, after Alois P. Heinz *)