A321342 Numbers k such that if j is the sum of the first k primes, then the sum of the first j primes is prime.
1, 9, 15, 19, 73, 85, 87, 103, 121, 157, 175, 277, 313, 317, 341, 357, 375, 385, 391, 421, 443, 447, 523, 525, 539, 571, 607, 611, 645, 701, 779, 783, 791, 799, 823, 831, 835, 853, 889, 907, 911, 925, 977, 1051, 1075, 1081, 1087, 1095, 1117, 1125, 1135, 1157, 1181, 1187, 1223, 1257, 1305, 1325
Offset: 1
Keywords
Examples
A007504(1) = 2 and A007504(2) = 5, a prime therefore 1 is a term. A007504(3) = 10 and A007504(10) = 129, not prime, therefore 3 is not a term. A007504(9) = 100 and A007504(100) = 24133, a prime so 9 is a term.
Links
- Ray Chandler, Table of n, a(n) for n = 1..16000
- Daniel Suteu, Perl program
Programs
-
Maple
N:=2000: for n from 1 to N by 2 do X:=add(ithprime(r),r=1..n); Y:=add(ithprime(k),k=1..X); if isprime(Y) then print(n); end if: end do:
-
Mathematica
primeSum[n_] := Sum[Prime[i], {i, n}]; Select[Range[300], PrimeQ[primeSum[primeSum[#]]] &] (* Amiram Eldar, Nov 07 2018 *)
-
PARI
sfp(n) = sum(k=1, n, prime(k)); \\ A007504 isok(n) = isprime(sfp(sfp(n))); \\ Michel Marcus, Nov 08 2018
Comments