cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A321355 Expansion of Product_{k>=0} (1 + x^(4^k))^(4^(k+1)).

Original entry on oeis.org

1, 4, 6, 4, 17, 64, 96, 64, 136, 480, 720, 480, 680, 2240, 3360, 2240, 2444, 7536, 11304, 7536, 7276, 21568, 32352, 21568, 21080, 62752, 94128, 62752, 62968, 189120, 283680, 189120, 178646, 525464, 788196, 525464, 454614, 1292992, 1939488, 1292992, 1085688, 3049760
Offset: 0

Views

Author

Seiichi Manyama, Nov 07 2018

Keywords

Comments

Also the coefficient of x^(4*n) in the expansion of Product_{k>=0} (1 + x^(4^k))^(4^k).

Examples

			Product_{k>=0} (1 + x^(4^k))^(4^k) = 1 + x + 4*x^4 + 4*x^5 + 6*x^8 + 6*x^9 + 4*x^12 + 4*x^13 + 17*x^16 + 17*x^17 + 64*x^20 + 64*x^21 + 96*x^24 + 96*x^25 + ... .
		

Crossrefs

A321357 Expansion of Product_{k>=0} (1 + x^(5^k))^(5^(k+1)).

Original entry on oeis.org

1, 5, 10, 10, 5, 26, 125, 250, 250, 125, 325, 1500, 3000, 3000, 1500, 2600, 11500, 23000, 23000, 11500, 14950, 63250, 126500, 126500, 63250, 65905, 266275, 532550, 532550, 266275, 233480, 901125, 1802250, 1802250, 901125, 698425, 2591000, 5182000, 5182000, 2591000
Offset: 0

Views

Author

Seiichi Manyama, Nov 07 2018

Keywords

Comments

Also the coefficient of x^(5*n) in the expansion of Product_{k>=0} (1 + x^(5^k))^(5^k).

Examples

			Product_{k>=0} (1 + x^(5^k))^(5^k) = 1 + x + 5*x^5 + 5*x^6 + 10*x^10 + 10*x^11 + 10*x^15 + 10*x^16 + 5*x^20 + 5*x^21 + 26*x^25 + 26*x^26 + ... .
		

Crossrefs

Showing 1-2 of 2 results.