cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A321429 Expansion of Product_{i>0, j>0, k>0} (1 + x^(i^2 + j^2 + k^2)).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 3, 0, 0, 6, 0, 3, 7, 0, 9, 13, 0, 18, 19, 3, 39, 28, 9, 66, 42, 33, 105, 68, 78, 168, 111, 153, 261, 185, 285, 411, 325, 483, 636, 563, 798, 1017, 949, 1275, 1620, 1556, 2061, 2547, 2500, 3303, 4008, 3969, 5226, 6216, 6252, 8301, 9534, 9784, 12984
Offset: 0

Views

Author

Seiichi Manyama, Nov 09 2018

Keywords

Crossrefs

Formula

G.f.: Product_{k>0} (1 + x^k)^A063691(k).

A321380 Expansion of 1/2 * Product_{i>=0, j>=0} (1 + x^(i^2 + j^2)).

Original entry on oeis.org

1, 2, 2, 2, 3, 6, 8, 8, 8, 12, 19, 22, 22, 26, 37, 48, 53, 58, 72, 92, 108, 118, 136, 166, 195, 222, 254, 298, 346, 394, 453, 524, 600, 672, 762, 884, 1011, 1126, 1255, 1438, 1652, 1850, 2047, 2302, 2626, 2960, 3274, 3636, 4095, 4602, 5112, 5662, 6319, 7056, 7834
Offset: 0

Views

Author

Seiichi Manyama, Nov 08 2018

Keywords

Crossrefs

Formula

G.f.: Product_{k>0} (1 + x^k)^A000925(k).

A321424 Expansion of 1/2 * Product_{0 <= i <= j <= k} (1 + x^(i^2 + j^2 + k^2)).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 4, 5, 8, 9, 11, 14, 16, 21, 25, 28, 35, 43, 50, 60, 70, 82, 98, 113, 131, 155, 182, 210, 244, 283, 326, 377, 432, 495, 571, 657, 747, 856, 979, 1112, 1269, 1439, 1632, 1859, 2105, 2377, 2694, 3040, 3426, 3867, 4349, 4894, 5509, 6184, 6939, 7788
Offset: 0

Views

Author

Seiichi Manyama, Nov 09 2018

Keywords

Crossrefs

Formula

G.f.: Product_{k>0} (1 + x^k)^A000164(k).
Showing 1-3 of 3 results.