cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321383 Numbers k such that the concatenation k21 is a square.

Original entry on oeis.org

1, 15, 37, 79, 123, 193, 259, 357, 445, 571, 681, 835, 967, 1149, 1303, 1513, 1689, 1927, 2125, 2391, 2611, 2905, 3147, 3469, 3733, 4083, 4369, 4747, 5055, 5461, 5791, 6225, 6577, 7039, 7413, 7903, 8299, 8817, 9235, 9781, 10221, 10795, 11257, 11859, 12343, 12973, 13479
Offset: 1

Views

Author

Bruno Berselli, Nov 08 2018

Keywords

Crossrefs

Cf. A008805.
Numbers k such that the concatenation km is a square: A132356 (m = 1), A273365 (m = 4), A273366 (m = 5), A273367 (m = 6), A273368 (m = 9); missing sequence for m = 16; this sequence for m = 21; missing sequence for m = 24; A002378 (m = 25).

Programs

  • GAP
    List([1..50], n -> (50*(n-1)*n+3*(2*n-1)*(-1)^n+11)/8);
    
  • Julia
    [div((50*(n-1)*n+3*(2*n-1)*(-1)^n+11), 8) for n in 1:50] |> println
  • Magma
    [(50*(n-1)*n+3*(2*n-1)*(-1)^n+11)/8: n in [1..50]];
    
  • Mathematica
    Table[(50 (n - 1) n + 3 (2 n - 1) (-1)^n + 11)/8, {n, 1, 50}]
  • Maxima
    makelist((50*(n-1)*n+3*(2*n-1)*(-1)^n+11)/8, n, 1, 50);
    
  • PARI
    vector(50, n, nn; (50*(n-1)*n+3*(2*n-1)*(-1)^n+11)/8)
    
  • PARI
    Vec(x*(1 + 14*x + 20*x^2 + 14*x^3 + x^4) / ((1 - x)^3*(1 + x)^2) + O(x^50)) \\ Colin Barker, Nov 12 2018
    
  • Python
    [(50*(n-1)*n+3*(2*n-1)*(-1)**n+11)/8 for n in range(1, 50)]
    
  • Sage
    [(50*(n-1)*n+3*(2*n-1)*(-1)^n+11)/8 for n in (1..50)]
    

Formula

G.f.: x*(1 + 14*x + 20*x^2 + 14*x^3 + x^4)/((1 + x)^2*(1 - x)^3).
a(n) = a(-n+1) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = 2*a(n-2) - a(n-4) + 50.
a(n) = (50*(n - 1)*n + 3*(2*n - 1)*(-1)^n + 11)/8. Therefore:
a(n) = (25*n^2 - 22*n + 4)/4 for even n;
a(n) = (25*n^2 - 28*n + 7)/4 for odd n.