A321391 Array read by antidiagonals: T(n,k) is the number of achiral rows of n colors using up to k colors.
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 2, 1, 0, 1, 4, 3, 4, 1, 0, 1, 5, 4, 9, 4, 1, 0, 1, 6, 5, 16, 9, 8, 1, 0, 1, 7, 6, 25, 16, 27, 8, 1, 0, 1, 8, 7, 36, 25, 64, 27, 16, 1, 0, 1, 9, 8, 49, 36, 125, 64, 81, 16, 1, 0, 1, 10, 9, 64, 49, 216, 125, 256, 81, 32, 1, 0
Offset: 0
Examples
The array begins with T(0,0): 1 1 1 1 1 1 1 1 1 1 1 1 ... 0 1 2 3 4 5 6 7 8 9 10 11 ... 0 1 2 3 4 5 6 7 8 9 10 11 ... 0 1 4 9 16 25 36 49 64 81 100 121 ... 0 1 4 9 16 25 36 49 64 81 100 121 ... 0 1 8 27 64 125 216 343 512 729 1000 1331 ... 0 1 8 27 64 125 216 343 512 729 1000 1331 ... 0 1 16 81 256 625 1296 2401 4096 6561 10000 14641 ... 0 1 16 81 256 625 1296 2401 4096 6561 10000 14641 ... 0 1 32 243 1024 3125 7776 16807 32768 59049 100000 161051 ... 0 1 32 243 1024 3125 7776 16807 32768 59049 100000 161051 ... 0 1 64 729 4096 15625 46656 117649 262144 531441 1000000 1771561 ... For T(3,3)=9, the rows are AAA, ABA, ACA, BAB, BBB, BCB, CAC, CBC, and CCC.
Crossrefs
Programs
-
Mathematica
Table[If[n>0, (n-k)^Ceiling[k/2], 1], {n, 0, 12}, {k, 0, n}] // Flatten
Formula
T(n,k) = [n==0] + [n>0] * k^ceiling(n/2).
The generating function for column k is (1+k*x) / (1-k*x^2).
Comments