A321394 a(n) = (1/24)*n!*[x^n] (9 + sectan(4*x) + 6*sectan(2*x) + 8*sectan(x)) where sectan(x) = sec(x) + tan(x).
1, 1, 2, 10, 75, 816, 11407, 194480, 3871075, 87700736, 2220246387, 62010892800, 1892138207375, 62591994720256, 2230631475837767, 85188256574494720, 3470563987113896475, 150234341045137637376, 6886077311552162511547, 333165973379285030666240, 16967906593223743786978375
Offset: 0
Keywords
Programs
-
Maple
sectan := x -> sec(x) + tan(x): # sin(Pi/4 + x/2)*csc(Pi/4 - x/2) egf := 9 + sectan(4*x) + 6*sectan(2*x) + 8*sectan(x): ser := series(egf, x, 22): seq((1/24)*n!*coeff(ser, x, n), n=0..20);
-
Mathematica
m = 20; sectan[x_] := Sec[x] + Tan[x]; egf = 9 + sectan[4x] + 6 sectan[2x] + 8 sectan[x]; (1/24) CoefficientList[egf + O[x]^(m+1), x] Range[0, m]! (* Jean-François Alcover, Aug 19 2021 *)
-
PARI
sectan(x) = 1/cos(x) + tan(x); my(x='x+O('x^25)); Vec(serlaplace(9 + sectan(4*x) + 6*sectan(2*x) + 8*sectan(x)))/24 \\ Michel Marcus, Aug 19 2021
Comments