cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321394 a(n) = (1/24)*n!*[x^n] (9 + sectan(4*x) + 6*sectan(2*x) + 8*sectan(x)) where sectan(x) = sec(x) + tan(x).

Original entry on oeis.org

1, 1, 2, 10, 75, 816, 11407, 194480, 3871075, 87700736, 2220246387, 62010892800, 1892138207375, 62591994720256, 2230631475837767, 85188256574494720, 3470563987113896475, 150234341045137637376, 6886077311552162511547, 333165973379285030666240, 16967906593223743786978375
Offset: 0

Views

Author

Peter Luschny, Nov 08 2018

Keywords

Comments

See A320956 for motivation and definitions.

Crossrefs

Cf. A000111 (n=1), A000828 (n=2), A320957 (n=3), this sequence (n=4), A320956.

Programs

  • Maple
    sectan := x -> sec(x) + tan(x): # sin(Pi/4 + x/2)*csc(Pi/4 - x/2)
    egf := 9 + sectan(4*x) + 6*sectan(2*x) + 8*sectan(x):
    ser := series(egf, x, 22): seq((1/24)*n!*coeff(ser, x, n), n=0..20);
  • Mathematica
    m = 20;
    sectan[x_] := Sec[x] + Tan[x];
    egf = 9 + sectan[4x] + 6 sectan[2x] + 8 sectan[x];
    (1/24) CoefficientList[egf + O[x]^(m+1), x] Range[0, m]! (* Jean-François Alcover, Aug 19 2021 *)
  • PARI
    sectan(x) = 1/cos(x) + tan(x);
    my(x='x+O('x^25)); Vec(serlaplace(9 + sectan(4*x) + 6*sectan(2*x) + 8*sectan(x)))/24 \\ Michel Marcus, Aug 19 2021