A321434 Triangle read by rows; T(n,k) is the number of achiral rows of n colors using exactly k colors.
1, 0, 1, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 6, 6, 0, 1, 6, 6, 0, 1, 14, 36, 24, 0, 1, 14, 36, 24, 0, 1, 30, 150, 240, 120, 0, 1, 30, 150, 240, 120, 0, 1, 62, 540, 1560, 1800, 720, 0, 1, 62, 540, 1560, 1800, 720, 0, 1, 126, 1806, 8400, 16800, 15120, 5040, 0, 1, 126, 1806, 8400, 16800, 15120, 5040
Offset: 0
Examples
The triangle begins with T(0,0): 1 0 1 0 1 0 1 2 0 1 2 0 1 6 6 0 1 6 6 0 1 14 36 24 0 1 14 36 24 0 1 30 150 240 120 0 1 30 150 240 120 0 1 62 540 1560 1800 720 0 1 62 540 1560 1800 720 0 1 126 1806 8400 16800 15120 5040 0 1 126 1806 8400 16800 15120 5040 0 1 254 5796 40824 126000 191520 141120 40320 0 1 254 5796 40824 126000 191520 141120 40320 0 1 510 18150 186480 834120 1905120 2328480 1451520 362880 For T(7,2)=14, the rows are AAABAAA, AABABAA, AABBBAA, ABAAABA, ABABABA, ABBABBA, ABBBBBA, BAAAAAB, BAABAAB, BABABAB, BABBBAB, BBAAABB, BBABABB, and BBBABBB.
Crossrefs
Programs
-
Mathematica
Table[k! StirlingS2[Ceiling[n/2], k], {n, 0, 18}, {k, 0, (n+1)/2}] // Flatten
Formula
T(n,k) = k!*S2(ceiling(n/2),k), where S2 is the Stirling subset number A008277.
Comments