cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321451 Number of integer partitions of n that cannot be partitioned into two or more blocks with equal sums.

Original entry on oeis.org

1, 1, 1, 2, 2, 6, 4, 14, 8, 20, 16, 55, 22, 100, 45, 108, 64, 296, 93, 489, 145, 447, 241, 1254, 284, 1692, 487, 1492, 627, 4564, 811, 6841, 1172, 4531, 1744, 12260, 1970, 21636, 3103, 12193, 3719, 44582, 4645, 63260, 6417, 29947, 8987, 124753, 9784, 162107, 14247
Offset: 0

Views

Author

Gus Wiseman, Nov 10 2018

Keywords

Examples

			The a(1) = 1 through a(9) = 20 partitions:
  (1)  (2)  (3)   (4)   (5)     (6)    (7)       (8)     (9)
            (21)  (31)  (32)    (42)   (43)      (53)    (54)
                        (41)    (51)   (52)      (62)    (63)
                        (221)   (411)  (61)      (71)    (72)
                        (311)          (322)     (332)   (81)
                        (2111)         (331)     (521)   (432)
                                       (421)     (611)   (441)
                                       (511)     (5111)  (522)
                                       (2221)            (531)
                                       (3211)            (621)
                                       (4111)            (711)
                                       (22111)           (3222)
                                       (31111)           (4221)
                                       (211111)          (4311)
                                                         (5211)
                                                         (6111)
                                                         (22221)
                                                         (42111)
                                                         (51111)
                                                         (411111)
A complete list of all multiset partitions of the partition (2111) into two or more blocks is: ((1)(112)), ((2)(111)), ((11)(12)), ((1)(1)(12)), ((1)(2)(11)), ((1)(1)(1)(2)). None of these has equal block-sums, so (2111) is counted toward a(5).
On the other hand, the partition (321) can be partitioned as ((12)(3)), which has two or more blocks and equal block-sums, so (321) is not counted toward a(6).
		

Crossrefs

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[IntegerPartitions[n],Length[Select[facs[Times@@Prime/@#],SameQ@@hwt/@#&]]==1&]],{n,10}]

Formula

a(n) = A000041(n) - A321452(n).

Extensions

a(33)-a(50) from Alois P. Heinz, Nov 11 2018