A321452 Number of integer partitions of n that can be partitioned into two or more blocks with equal sums.
0, 0, 1, 1, 3, 1, 7, 1, 14, 10, 26, 1, 55, 1, 90, 68, 167, 1, 292, 1, 482, 345, 761, 1, 1291, 266, 1949, 1518, 3091, 1, 4793, 1, 7177, 5612, 10566, 2623, 16007, 1, 22912, 18992, 33619, 1, 48529, 1, 68758, 59187, 96571, 1, 137489, 11418, 189979, 167502, 264299
Offset: 0
Keywords
Examples
The a(2) = 1 through a(9) = 10 partitions: (11) (111) (22) (11111) (33) (1111111) (44) (333) (211) (222) (422) (3321) (1111) (321) (431) (32211) (2211) (2222) (33111) (3111) (3221) (222111) (21111) (3311) (321111) (111111) (4211) (2211111) (22211) (3111111) (32111) (21111111) (41111) (111111111) (221111) (311111) (2111111) (11111111) The partition (32111) can be partitioned as ((13)(112)), and the blocks both sum to 4, so (32111) is counted under a(8).
Crossrefs
Programs
-
Mathematica
hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]]; facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Length[Select[IntegerPartitions[n],Length[Select[facs[Times@@Prime/@#],SameQ@@hwt/@#&]]>1&]],{n,10}]
Extensions
a(26)-a(52) from Alois P. Heinz, Nov 11 2018
Comments