cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321452 Number of integer partitions of n that can be partitioned into two or more blocks with equal sums.

Original entry on oeis.org

0, 0, 1, 1, 3, 1, 7, 1, 14, 10, 26, 1, 55, 1, 90, 68, 167, 1, 292, 1, 482, 345, 761, 1, 1291, 266, 1949, 1518, 3091, 1, 4793, 1, 7177, 5612, 10566, 2623, 16007, 1, 22912, 18992, 33619, 1, 48529, 1, 68758, 59187, 96571, 1, 137489, 11418, 189979, 167502, 264299
Offset: 0

Views

Author

Gus Wiseman, Nov 10 2018

Keywords

Comments

a(n) = 1 if and only if n is prime. - Chai Wah Wu, Nov 12 2018

Examples

			The a(2) = 1 through a(9) = 10 partitions:
  (11)  (111)  (22)    (11111)  (33)      (1111111)  (44)        (333)
               (211)            (222)                (422)       (3321)
               (1111)           (321)                (431)       (32211)
                                (2211)               (2222)      (33111)
                                (3111)               (3221)      (222111)
                                (21111)              (3311)      (321111)
                                (111111)             (4211)      (2211111)
                                                     (22211)     (3111111)
                                                     (32111)     (21111111)
                                                     (41111)     (111111111)
                                                     (221111)
                                                     (311111)
                                                     (2111111)
                                                     (11111111)
The partition (32111) can be partitioned as ((13)(112)), and the blocks both sum to 4, so (32111) is counted under a(8).
		

Crossrefs

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[IntegerPartitions[n],Length[Select[facs[Times@@Prime/@#],SameQ@@hwt/@#&]]>1&]],{n,10}]

Formula

a(n) = A000041(n) - A321451(n).

Extensions

a(26)-a(52) from Alois P. Heinz, Nov 11 2018