cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321453 Numbers that cannot be factored into two or more factors all having the same sum of prime indices.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 85
Offset: 1

Views

Author

Gus Wiseman, Nov 10 2018

Keywords

Comments

Also Heinz numbers of integer partitions that cannot be partitioned into two or more blocks with equal sums. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The sum of prime indices of n is A056239(n).

Examples

			The sequence of all integer partitions that cannot be partitioned into two or more blocks with equal sums begins: (1), (2), (3), (21), (4), (31), (5), (6), (41), (32), (7), (221), (8), (311), (42), (51), (9), (2111), (61), (411).
		

Crossrefs

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],Select[facs[#],And[Length[#]>1,SameQ@@hwt/@#]&]=={}&]