cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 29 results. Next

A006827 Number of partitions of 2n with all subsums different from n.

Original entry on oeis.org

1, 2, 5, 8, 17, 24, 46, 64, 107, 147, 242, 302, 488, 629, 922, 1172, 1745, 2108, 3104, 3737, 5232, 6419, 8988, 10390, 14552, 17292, 23160, 27206, 36975, 41945, 57058, 65291, 85895, 99384, 130443, 145283, 193554, 218947, 281860, 316326, 413322, 454229, 594048
Offset: 1

Views

Author

Keywords

Comments

Partitions of this type are also called non-biquanimous partitions. - Gus Wiseman, Apr 19 2024

Examples

			From _Gus Wiseman_, Apr 19 2024: (Start)
The a(1) = 1 through a(5) = 17 partitions (A = 10):
  (2)  (4)   (6)    (8)     (A)
       (31)  (42)   (53)    (64)
             (51)   (62)    (73)
             (222)  (71)    (82)
             (411)  (332)   (91)
                    (521)   (433)
                    (611)   (442)
                    (5111)  (622)
                            (631)
                            (721)
                            (811)
                            (3331)
                            (4222)
                            (6211)
                            (7111)
                            (22222)
                            (61111)
(End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The complement is counted by A002219, ranks A357976.
Central diagonal of A046663.
The strict case is A321142, even bisection of A371794 (odd A078408).
This is the "bi-" version of A321451, ranks A321453.
Column k = 0 of A367094.
These partitions have Heinz numbers A371731.
Even bisection of A371795 (odd A058695).
A371783 counts k-quanimous partitions.

Programs

  • Maple
    b:= proc(n, i, s) option remember;
          `if`(0 in s or n in s, 0, `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, s)+
          `if`(i<=n, b(n-i, i, select(y-> 0<=y and y<=n-i,
                     map(x-> [x, x-i][], s))), 0))))
        end:
    a:= n-> b(2*n, 2*n, {n}):
    seq(a(n), n=1..25);  # Alois P. Heinz, Jul 10 2012
  • Mathematica
    b[n_, i_, s_] := b[n, i, s] = If[MemberQ[s, 0 | n], 0, If[n == 0, 1, If[i < 1, 0, b[n, i-1, s] + If[i <= n, b[n-i, i, Select[Flatten[Transpose[{s, s-i}]], 0 <= # <= n-i &]], 0]]]]; a[n_] := b[2*n, 2*n, {n}]; Table[Print[an = a[n]]; an, {n, 1, 25}] (* Jean-François Alcover, Nov 12 2013, after Alois P. Heinz *)
  • Python
    from itertools import combinations_with_replacement
    from collections import Counter
    from sympy import npartitions
    from sympy.utilities.iterables import partitions
    def A006827(n): return npartitions(n<<1)-len({tuple(sorted((p+q).items())) for p, q in combinations_with_replacement(tuple(Counter(p) for p in partitions(n)),2)}) # Chai Wah Wu, Sep 20 2023

Formula

a(n) = A000041(2*n) - A002219(n).
a(n) = A046663(2*n,n).

Extensions

More terms from Don Reble, Nov 03 2001
More terms from Alois P. Heinz, Jul 10 2012

A321455 Number of ways to factor n into factors > 1 all having the same sum of prime indices.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3
Offset: 1

Views

Author

Gus Wiseman, Nov 10 2018

Keywords

Comments

Also the number of multiset partitions of the multiset of prime indices of n with equal block-sums.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The sum of prime indices of n is A056239(n).

Examples

			The a(1440) = 6 factorizations into factors all having the same sum of prime indices:
  (10*12*12)
  (5*6*6*8)
  (9*10*16)
  (30*48)
  (36*40)
  (1440)
The a(900) = 5 multiset partitions with equal block-sums:
  {{1,1,2,2,3,3}}
  {{3,3},{1,1,2,2}}
  {{1,2,3},{1,2,3}}
  {{1,3},{1,3},{2,2}}
  {{3},{3},{1,2},{1,2}}
		

Crossrefs

Positions of 1's are A321453. Positions of terms > 1 are A321454.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],SameQ@@hwt/@#&]],{n,100}]
  • PARI
    A056239(n) = if(1==n, 0, my(f=factor(n)); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1])));
    all_have_same_sum_of_pis(facs) = if(!#facs, 1, (#Set(apply(A056239,facs)) == 1));
    A321455(n, m=n, facs=List([])) = if(1==n, all_have_same_sum_of_pis(facs), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A321455(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Jan 20 2025

Extensions

Data section extended to a(108) by Antti Karttunen, Jan 20 2025

A321452 Number of integer partitions of n that can be partitioned into two or more blocks with equal sums.

Original entry on oeis.org

0, 0, 1, 1, 3, 1, 7, 1, 14, 10, 26, 1, 55, 1, 90, 68, 167, 1, 292, 1, 482, 345, 761, 1, 1291, 266, 1949, 1518, 3091, 1, 4793, 1, 7177, 5612, 10566, 2623, 16007, 1, 22912, 18992, 33619, 1, 48529, 1, 68758, 59187, 96571, 1, 137489, 11418, 189979, 167502, 264299
Offset: 0

Views

Author

Gus Wiseman, Nov 10 2018

Keywords

Comments

a(n) = 1 if and only if n is prime. - Chai Wah Wu, Nov 12 2018

Examples

			The a(2) = 1 through a(9) = 10 partitions:
  (11)  (111)  (22)    (11111)  (33)      (1111111)  (44)        (333)
               (211)            (222)                (422)       (3321)
               (1111)           (321)                (431)       (32211)
                                (2211)               (2222)      (33111)
                                (3111)               (3221)      (222111)
                                (21111)              (3311)      (321111)
                                (111111)             (4211)      (2211111)
                                                     (22211)     (3111111)
                                                     (32111)     (21111111)
                                                     (41111)     (111111111)
                                                     (221111)
                                                     (311111)
                                                     (2111111)
                                                     (11111111)
The partition (32111) can be partitioned as ((13)(112)), and the blocks both sum to 4, so (32111) is counted under a(8).
		

Crossrefs

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[IntegerPartitions[n],Length[Select[facs[Times@@Prime/@#],SameQ@@hwt/@#&]]>1&]],{n,10}]

Formula

a(n) = A000041(n) - A321451(n).

Extensions

a(26)-a(52) from Alois P. Heinz, Nov 11 2018

A321451 Number of integer partitions of n that cannot be partitioned into two or more blocks with equal sums.

Original entry on oeis.org

1, 1, 1, 2, 2, 6, 4, 14, 8, 20, 16, 55, 22, 100, 45, 108, 64, 296, 93, 489, 145, 447, 241, 1254, 284, 1692, 487, 1492, 627, 4564, 811, 6841, 1172, 4531, 1744, 12260, 1970, 21636, 3103, 12193, 3719, 44582, 4645, 63260, 6417, 29947, 8987, 124753, 9784, 162107, 14247
Offset: 0

Views

Author

Gus Wiseman, Nov 10 2018

Keywords

Examples

			The a(1) = 1 through a(9) = 20 partitions:
  (1)  (2)  (3)   (4)   (5)     (6)    (7)       (8)     (9)
            (21)  (31)  (32)    (42)   (43)      (53)    (54)
                        (41)    (51)   (52)      (62)    (63)
                        (221)   (411)  (61)      (71)    (72)
                        (311)          (322)     (332)   (81)
                        (2111)         (331)     (521)   (432)
                                       (421)     (611)   (441)
                                       (511)     (5111)  (522)
                                       (2221)            (531)
                                       (3211)            (621)
                                       (4111)            (711)
                                       (22111)           (3222)
                                       (31111)           (4221)
                                       (211111)          (4311)
                                                         (5211)
                                                         (6111)
                                                         (22221)
                                                         (42111)
                                                         (51111)
                                                         (411111)
A complete list of all multiset partitions of the partition (2111) into two or more blocks is: ((1)(112)), ((2)(111)), ((11)(12)), ((1)(1)(12)), ((1)(2)(11)), ((1)(1)(1)(2)). None of these has equal block-sums, so (2111) is counted toward a(5).
On the other hand, the partition (321) can be partitioned as ((12)(3)), which has two or more blocks and equal block-sums, so (321) is not counted toward a(6).
		

Crossrefs

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[IntegerPartitions[n],Length[Select[facs[Times@@Prime/@#],SameQ@@hwt/@#&]]==1&]],{n,10}]

Formula

a(n) = A000041(n) - A321452(n).

Extensions

a(33)-a(50) from Alois P. Heinz, Nov 11 2018

A321454 Numbers that can be factored into two or more factors all having the same sum of prime indices.

Original entry on oeis.org

4, 8, 9, 12, 16, 25, 27, 30, 32, 36, 40, 48, 49, 63, 64, 70, 81, 84, 90, 100, 108, 112, 120, 121, 125, 128, 144, 150, 154, 160, 165, 169, 180, 192, 196, 198, 200, 210, 216, 220, 225, 240, 243, 252, 256, 264, 270, 273, 280, 286, 288, 289, 300, 320, 324, 325
Offset: 1

Views

Author

Gus Wiseman, Nov 10 2018

Keywords

Comments

Also Heinz numbers of integer partitions that can be partitioned into two or more blocks with equal sums. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The sum of prime indices of n is A056239(n).

Examples

			The sequence of all integer partitions that can be partitioned into two or more blocks with equal sums begins: (11), (111), (22), (211), (1111), (33), (222), (321), (11111), (2211), (3111), (21111), (44), (422), (111111), (431), (2222), (4211), (3221), (3311), (22211), (41111), (32111), (55), (333), (1111111), (221111), (3321), (541), (311111), (532), (66), (32211), (2111111), (4411), (5221), (33111).
The Heinz number of (32111) is 120, which has factorization (10*12) corresponding to the multiset partition ((13)(112)) whose blocks have equal sums, so 120 belongs to the sequence.
		

Crossrefs

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],Select[facs[#],And[Length[#]>1,SameQ@@hwt/@#]&]!={}&]

A371783 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n that can be partitioned into d = A027750(n,k) blocks with equal sums.

Original entry on oeis.org

1, 2, 1, 3, 1, 5, 3, 1, 7, 1, 11, 6, 4, 1, 15, 1, 22, 14, 5, 1, 30, 10, 1, 42, 25, 6, 1, 56, 1, 77, 53, 30, 15, 7, 1, 101, 1, 135, 89, 8, 1, 176, 65, 21, 1, 231, 167, 55, 9, 1, 297, 1, 385, 278, 173, 28, 10, 1, 490, 1, 627, 480, 140, 91, 11, 1, 792, 343, 36, 1
Offset: 1

Views

Author

Gus Wiseman, Apr 14 2024

Keywords

Comments

These could be called d-quanimous partitions, cf. A002219, A064914, A321452.

Examples

			Triangle begins:
    1
    2   1
    3   1
    5   3   1
    7   1
   11   6   4   1
   15   1
   22  14   5   1
   30  10   1
   42  25   6   1
   56   1
   77  53  30  15   7   1
  101   1
  135  89   8   1
  176  65  21   1
Row n = 6 counts the following partitions:
  (6)       (33)      (222)     (111111)
  (33)      (321)     (2211)
  (42)      (2211)    (21111)
  (51)      (3111)    (111111)
  (222)     (21111)
  (321)     (111111)
  (411)
  (2211)
  (3111)
  (21111)
  (111111)
		

Crossrefs

Row lengths are A000005.
Column k = 1 is A000041.
Inserting zeros gives A371954.
Row sums are A372121.
A002219 (aerated) counts biquanimous partitions, ranks A357976.
A237258 aerated counts biquanimous strict partitions, ranks A357854.
A321142 and A371794 count non-biquanimous strict partitions.
A321451 counts non-quanimous partitions, ranks A321453.
A321452 counts quanimous partitions, ranks A321454.
A371736 counts non-quanimous strict partitons, complement A371737.
A371781 lists numbers with biquanimous prime signature, complement A371782.
A371789 counts non-quanimous sets, differences A371790.
A371796 counts quanimous sets, differences A371797.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    facs[n_]:=If[n<=1,{{}}, Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]], {d,Rest[Divisors[n]]}]];
    Table[Length[Select[IntegerPartitions[n], Select[facs[Times@@Prime/@#], Length[#]==k&&SameQ@@hwt/@#&]!={}&]],{n,1,8},{k,Divisors[n]}]

Extensions

More terms from Jinyuan Wang, Feb 13 2025
Name edited by Peter Munn, Mar 05 2025

A371795 Number of non-biquanimous integer partitions of n.

Original entry on oeis.org

0, 1, 1, 3, 2, 7, 5, 15, 8, 30, 17, 56, 24, 101, 46, 176, 64, 297, 107, 490, 147, 792, 242, 1255, 302, 1958, 488, 3010, 629, 4565, 922, 6842, 1172, 10143, 1745, 14883, 2108, 21637, 3104, 31185, 3737, 44583, 5232, 63261, 6419, 89134, 8988, 124754, 10390, 173525
Offset: 0

Views

Author

Gus Wiseman, Apr 07 2024

Keywords

Comments

A finite multiset of numbers is defined to be biquanimous iff it can be partitioned into two multisets with equal sums. Biquanimous partitions are counted by A002219 and ranked by A357976.

Examples

			The a(1) = 1 through a(8) = 8 partitions:
  (1)  (2)  (3)    (4)   (5)      (6)    (7)        (8)
            (21)   (31)  (32)     (42)   (43)       (53)
            (111)        (41)     (51)   (52)       (62)
                         (221)    (222)  (61)       (71)
                         (311)    (411)  (322)      (332)
                         (2111)          (331)      (521)
                         (11111)         (421)      (611)
                                         (511)      (5111)
                                         (2221)
                                         (3211)
                                         (4111)
                                         (22111)
                                         (31111)
                                         (211111)
                                         (1111111)
		

Crossrefs

The complement is counted by A002219 aerated, ranks A357976.
Even bisection is A006827, odd A058695.
The strict complement is A237258, ranks A357854.
This is the "bi-" version of A321451, ranks A321453.
The complement is the "bi-" version of A321452, ranks A321454.
These partitions have ranks A371731.
The strict case is A371794, bisections A321142, A078408.
A108917 counts knapsack partitions, ranks A299702, strict A275972.
A366754 counts non-knapsack partitions, ranks A299729, strict A316402.
A371736 counts non-quanimous strict partitons, complement A371737.
A371781 lists numbers with biquanimous prime signature, complement A371782.
A371783 counts k-quanimous partitions.
A371789 counts non-quanimous sets, differences A371790.
A371791 counts biquanimous sets, differences A232466.
A371792 counts non-biquanimous sets, differences A371793.
A371796 counts quanimous sets, differences A371797.

Programs

  • Mathematica
    biqQ[y_]:=MemberQ[Total/@Subsets[y],Total[y]/2];
    Table[Length[Select[IntegerPartitions[n],Not@*biqQ]],{n,0,15}]
  • PARI
    a(n) = if(n%2, numbpart(n), my(v=partitions(n/2), w=List([])); for(i=1, #v, for(j=1, i, listput(w, vecsort(concat(v[i], v[j]))))); numbpart(n)-#Set(w)); \\ Jinyuan Wang, Feb 13 2025

Extensions

More terms from Jinyuan Wang, Feb 13 2025

A371791 Number of biquanimous subsets of {1..n}. Sets with a subset having the same sum as the complement.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 18, 38, 82, 175, 373, 787, 1651, 3439, 7126, 14667, 30049, 61249, 124440, 251922, 508779, 1025183, 2062287, 4142644, 8312927, 16667005, 33395275, 66880828, 133892910, 267976571, 536225921, 1072842931, 2146233971, 4293248183, 8587569636, 17176654105, 34355356676, 68713584720, 137430991937, 274867311960, 549741605972, 1099492913172, 2198998307679, 4398013970156, 8796049891377, 17592130283755, 35184298506429
Offset: 0

Views

Author

Gus Wiseman, Apr 07 2024

Keywords

Comments

A finite multiset of numbers is defined to be biquanimous iff it can be partitioned into two multisets with equal sums. Biquanimous partitions are counted by A002219 and ranked by A357976.

Examples

			For S = {1,3,4,6} we have {{1,6},{3,4}}, so S is counted under a(6).
The a(0) = 1 through a(6) = 18 subsets:
  {}  {}  {}  {}       {}         {}         {}
              {1,2,3}  {1,2,3}    {1,2,3}    {1,2,3}
                       {1,3,4}    {1,3,4}    {1,3,4}
                       {1,2,3,4}  {1,4,5}    {1,4,5}
                                  {2,3,5}    {1,5,6}
                                  {1,2,3,4}  {2,3,5}
                                  {1,2,4,5}  {2,4,6}
                                  {2,3,4,5}  {1,2,3,4}
                                             {1,2,3,6}
                                             {1,2,4,5}
                                             {1,2,5,6}
                                             {1,3,4,6}
                                             {2,3,4,5}
                                             {2,3,5,6}
                                             {3,4,5,6}
                                             {1,2,3,4,6}
                                             {1,2,4,5,6}
                                             {2,3,4,5,6}
		

Crossrefs

First differences are A232466.
The complement is counted by A371792, differences A371793.
This is the "bi-" case of A371796, differences A371797.
A002219 aerated counts biquanimous partitions, ranks A357976.
A006827 and A371795 count non-biquanimous partitions, ranks A371731.
A108917 counts knapsack partitions, ranks A299702, strict A275972.
A237258 aerated counts biquanimous strict partitions, ranks A357854.
A321142 and A371794 count non-biquanimous strict partitions.
A321451 counts non-quanimous partitions, ranks A321453.
A321452 counts quanimous partitions, ranks A321454.
A366754 counts non-knapsack partitions, ranks A299729, strict A316402.
A371737 counts quanimous strict partitions, complement A371736.
A371781 lists numbers with biquanimous prime signature, complement A371782.
A371783 counts k-quanimous partitions.

Programs

  • Mathematica
    biqQ[y_]:=MemberQ[Total/@Subsets[y],Total[y]/2];
    Table[Length[Select[Subsets[Range[n]],biqQ]],{n,0,15}]

Extensions

a(16) onwards from Martin Fuller, Mar 21 2025

A371731 Heinz numbers of non-biquanimous integer partitions. Numbers without a divisor having the same sum of prime indices as the quotient.

Original entry on oeis.org

2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
Offset: 1

Views

Author

Gus Wiseman, Apr 07 2024

Keywords

Comments

These partitions are counted by A371795, even case A006827.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A finite multiset of numbers is defined to be biquanimous iff it can be partitioned into two multisets with equal sums. Biquanimous partitions are counted by A002219 aerated and ranked by A357976.

Examples

			The prime indices of 975 are {2,3,3,6}, which are not biquanimous, so 975 is in the sequence.
The prime indices of 900 are {1,1,2,2,3,3}, which can be partitioned into {{1,2,3},{1,2,3}} or {{3,3},{1,1,2,2}}, so 900 is not in the sequence.
		

Crossrefs

The complement is A357976, counted by A002219.
For prime signature instead of indices we have A371782, complement A371781.
Partitions of this type are counted by A371795, even case A006827.
A108917 counts knapsack partitions, ranks A299702, strict A275972.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A237258 aerated counts biquanimous strict partitions, ranks A357854.
A321142 and A371794 count non-biquanimous strict partitions.
A321451 counts non-quanimous partitions, ranks A321453.
A321452 counts quanimous partitions, ranks A321454.
A366754 counts non-knapsack partitions, ranks A299729, strict A316402.
A371737 counts quanimous strict partitions, complement A371736.
A371783 counts k-quanimous partitions.
A371789 counts non-quanimous sets, differences A371790.
A371791 counts biquanimous sets, differences A232466.
A371792 counts non-biquanimous sets, differences A371793.
A371796 counts quanimous sets, differences A371797.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    biqQ[y_]:=MemberQ[Total/@Subsets[y],Total[y]/2];
    Select[Range[100],Not@*biqQ@*prix]

Formula

Numbers n without a divisor d|n such that A056239(d) = A056239(n/d).

A371796 Number of quanimous subsets of {1..n}, meaning there is more than one set partition with all equal block-sums.

Original entry on oeis.org

0, 0, 0, 1, 3, 8, 19, 43, 94, 206, 439, 946, 1990, 4204, 8761, 18233, 37778, 78151, 160296, 328670, 670193, 1363543, 2772436, 5632801, 11404156, 23071507, 46613529, 94098106, 189959349, 383407198, 773009751
Offset: 0

Views

Author

Gus Wiseman, Apr 17 2024

Keywords

Comments

A finite multiset of numbers is defined to be quanimous iff it can be partitioned into two or more multisets with equal sums. Quanimous partitions are counted by A321452 and ranked by A321454.

Examples

			The set s = {3,4,6,8,9} has set partitions {{3,4,6,8,9}} and {{3,4,8},{6,9}} with equal block-sums, so s is counted under a(9).
The a(3) = 1 through a(6) = 19 subsets:
  {1,2,3}  {1,2,3}    {1,2,3}      {1,2,3}
           {1,3,4}    {1,3,4}      {1,3,4}
           {1,2,3,4}  {1,4,5}      {1,4,5}
                      {2,3,5}      {1,5,6}
                      {1,2,3,4}    {2,3,5}
                      {1,2,4,5}    {2,4,6}
                      {2,3,4,5}    {1,2,3,4}
                      {1,2,3,4,5}  {1,2,3,6}
                                   {1,2,4,5}
                                   {1,2,5,6}
                                   {1,3,4,6}
                                   {2,3,4,5}
                                   {2,3,5,6}
                                   {3,4,5,6}
                                   {1,2,3,4,5}
                                   {1,2,3,4,6}
                                   {1,2,4,5,6}
                                   {2,3,4,5,6}
                                   {1,2,3,4,5,6}
		

Crossrefs

The "bi-" version for integer partitions is A002219 aerated, ranks A357976.
The "bi-" version for strict partitions is A237258 aerated, ranks A357854.
The complement for integer partitions is A321451, ranks A321453.
The version for integer partitions is A321452, ranks A321454
The version for strict partitions is A371737, complement A371736.
The complement is counted by A371789, differences A371790.
The "bi-" version is A371791, complement A371792.
First differences are A371797.
A108917 counts knapsack partitions, ranks A299702, strict A275972.
A366754 counts non-knapsack partitions, ranks A299729, strict A316402.
A371783 counts k-quanimous partitions.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[Subsets[Range[n]], Length[Select[sps[#],SameQ@@Total/@#&]]>1&]],{n,0,10}]

Extensions

a(11)-a(30) from Bert Dobbelaere, Mar 30 2025
Showing 1-10 of 29 results. Next