A002219 a(n) is the number of partitions of 2n that can be obtained by adding together two (not necessarily distinct) partitions of n.
1, 3, 6, 14, 25, 53, 89, 167, 278, 480, 760, 1273, 1948, 3089, 4682, 7177, 10565, 15869, 22911, 33601, 47942, 68756, 96570, 136883, 189674, 264297, 362995, 499617, 678245, 924522, 1243098, 1676339, 2237625, 2988351, 3957525, 5247500, 6895946, 9070144, 11850304
Offset: 1
Examples
Here are the seven partitions of 5: 1^5, 1^3 2, 1 2^2, 1^2 3, 2 3, 1 4, 5. Adding these together in pairs we get a(5) = 25 partitions of 10: 1^10, 1^8 2, 1^6 2^2, etc. (we get all partitions of 10 into parts of size <= 5 - there are 30 such partitions - except for five of them: we do not get 2 4^2, 3^2 4, 2^3 4, 1 3^3, 2^5). - _N. J. A. Sloane_, Jun 03 2012 From _Gus Wiseman_, Oct 27 2022: (Start) The a(1) = 1 through a(4) = 14 partitions: (11) (22) (33) (44) (211) (321) (422) (1111) (2211) (431) (3111) (2222) (21111) (3221) (111111) (3311) (4211) (22211) (32111) (41111) (221111) (311111) (2111111) (11111111) (End)
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 1..140 (terms 1..89 from Alois P. Heinz)
- N. Metropolis and P. R. Stein, An elementary solution to a problem in restricted partitions, J. Combin. Theory, 9 (1970), 365-376.
- Vladimir A. Shlyk, Number of Vertices of the Polytope of Integer Partitions and Factorization of the Partitioned Number, arXiv:1805.07989 [math.CO], 2018.
Crossrefs
Programs
-
Maple
g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>1, g(n, i-1), 0)+`if`(i>n, 0, g(n-i, i))) end: b:= proc(n, i, s) option remember; `if`(i=1 and s<>{} or n in s, g(n, i), `if`(i<1 or s={}, 0, b(n, i-1, s)+ `if`(i>n, 0, b(n-i, i, map(x-> {`if`(x>n-i, NULL, max(x, n-i-x)), `if`(xn, NULL, max(x-i, n-x))}[], s))))) end: a:= n-> b(2*n, n, {n}): seq(a(n), n=1..25); # Alois P. Heinz, Jul 10 2012
-
Mathematica
b[n_, i_, s_] := b[n, i, s] = If[MemberQ[s, 0 | n], 0, If[n == 0, 1, If[i < 1, 0, b[n, i-1, s] + If[i <= n, b[n-i, i, Select[Flatten[Transpose[{s, s-i}]], 0 <= # <= n-i &]], 0]]]]; A006827[n_] := b[2*n, 2*n, {n}]; a[n_] := PartitionsP[2*n] - A006827[n]; Table[Print[an = a[n]]; an, {n, 1, 25}] (* Jean-François Alcover, Nov 12 2013, after Alois P. Heinz *) primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; subptns[s_]:=primeMS/@Divisors[Times@@Prime/@s]; Table[Length[Select[IntegerPartitions[2n],MemberQ[Total/@subptns[#],n]&]],{n,10}] (* Gus Wiseman, Oct 27 2022 *)
-
Python
from itertools import combinations_with_replacement from sympy.utilities.iterables import partitions def A002219(n): return len({tuple(sorted((p+q).items())) for p, q in combinations_with_replacement(tuple(Counter(p) for p in partitions(n)),2)}) # Chai Wah Wu, Sep 20 2023
Formula
Extensions
Better description from Vladeta Jovovic, Mar 06 2000
More terms from Christian G. Bower, Oct 12 2001
Edited by N. J. A. Sloane, Jun 03 2012
More terms from Alois P. Heinz, Jul 10 2012
Comments