cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 55 results. Next

A126796 Number of complete partitions of n.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 5, 8, 10, 16, 20, 31, 39, 55, 71, 100, 125, 173, 218, 291, 366, 483, 600, 784, 971, 1244, 1538, 1957, 2395, 3023, 3693, 4605, 5604, 6942, 8397, 10347, 12471, 15235, 18309, 22267, 26619, 32219, 38414, 46216, 54941, 65838, 77958, 93076, 109908
Offset: 0

Views

Author

Brian Hopkins, Feb 20 2007

Keywords

Comments

A partition of n is complete if every number 1 to n can be represented as a sum of parts of the partition. This generalizes perfect partitions, where the representation for each number must be unique.
A partition is complete iff each part is no more than 1 more than the sum of all smaller parts. (This includes the smallest part, which thus must be 1.) - Franklin T. Adams-Watters, Mar 22 2007
For n > 0: a(n) = sum of n-th row in A261036 and also a(floor(n/2)) = A261036(n,floor((n+1)/2)). - Reinhard Zumkeller, Aug 08 2015
a(n+1) is the number of partitions of n such that each part is no more than 2 more than the sum of all smaller parts (generalizing Adams-Watters's criterion). Bijection: each partition counted by a(n+1) must contain a 1, removing that gives a desired partition of n. - Brian Hopkins, May 16 2017
A partition (x_1, ..., x_k) is complete if and only if 1, x_1, ..., x_k is a "regular sequence" (see A003513 for definition). As a result, the number of complete partitions with n parts is given by A003513(n+1). - Nathaniel Johnston, Jun 29 2023

Examples

			There are a(5) = 4 complete partitions of 5:
  [1, 1, 1, 1, 1], [1, 1, 1, 2], [1, 2, 2], and [1, 1, 3].
G.f.: 1 = 1*(1-x) + 1*x*(1-x)*(1-x^2) + 1*x^2*(1-x)*(1-x^2)*(1-x^3) + 2*x^3*(1-x)*(1-x^2)*(1-x^3)*(1-x^4) + 2*x^4*(1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5) + ...
From _Gus Wiseman_, Oct 14 2023: (Start)
The a(1) = 1 through a(8) = 10 partitions:
  (1)  (11)  (21)   (211)   (221)    (321)     (421)      (3221)
             (111)  (1111)  (311)    (2211)    (2221)     (3311)
                            (2111)   (3111)    (3211)     (4211)
                            (11111)  (21111)   (4111)     (22211)
                                     (111111)  (22111)    (32111)
                                               (31111)    (41111)
                                               (211111)   (221111)
                                               (1111111)  (311111)
                                                          (2111111)
                                                          (11111111)
(End)
		

Crossrefs

For parts instead of sums we have A000009 (sc. coverings), ranks A055932.
The strict case is A188431, complement A365831.
These partitions have ranks A325781.
First column k = 0 of A365923.
The complement is counted by A365924, ranks A365830.

Programs

  • Haskell
    import Data.MemoCombinators (memo3, integral, Memo)
    a126796 n = a126796_list !! n
    a126796_list = map (pMemo 1 1) [0..] where
       pMemo = memo3 integral integral integral p
       p   0 = 1
       p s k m
         | k > min m s = 0
         | otherwise   = pMemo (s + k) k (m - k) + pMemo s (k + 1) m
    -- Reinhard Zumkeller, Aug 07 2015
  • Maple
    isCompl := proc(p,n) local m,pers,reps,f,lst,s; reps := {}; pers := combinat[permute](p); for m from 1 to nops(pers) do lst := op(m,pers); for f from 1 to nops(lst) do s := add( op(i,lst),i=1..f); reps := reps union {s}; od; od; for m from 1 to n do if not m in reps then RETURN(false); fi; od; RETURN(true); end: A126796 := proc(n) local prts, res,p; prts := combinat[partition](n); res :=0; for p from 1 to nops(prts) do if isCompl(op(p,prts),n) then res := res+1; fi; od; RETURN(res); end: for n from 1 to 40 do printf("%d %d ",n,A126796(n)); od; # R. J. Mathar, Feb 27 2007
    # At the beginning of the 2nd Maple program replace the current 15 by any other positive integer n in order to obtain a(n). - Emeric Deutsch, Mar 04 2007
    with(combinat): a:=proc(n) local P,b,k,p,S,j: P:=partition(n): b:=0: for k from 1 to numbpart(n) do p:=powerset(P[k]): S:={}: for j from 1 to nops(p) do S:=S union {add(p[j][i],i=1..nops(p[j]))} od: if nops(S)=n+1 then b:=b+1 else b:=b: fi: od: end: seq(a(n),n=1..30); # Emeric Deutsch, Mar 04 2007
    with(combinat): n:=15: P:=partition(n): b:=0: for k from 1 to numbpart(n) do p:=powerset(P[k]): S:={}: for j from 1 to nops(p) do S:=S union {add(p[j][i],i=1..nops(p[j]))} od: if nops(S)=n+1 then b:=b+1 else b:=b: fi: od: b; # Emeric Deutsch, Mar 04 2007
  • Mathematica
    T[n_, k_] := T[n, k] = If[k <= 1, 1, If[n < 2k-1, T[n, Floor[(n+1)/2]], T[n, k-1] + T[n-k, k]]];
    a[n_] := T[n, Floor[(n+1)/2]];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Apr 11 2017, after Franklin T. Adams-Watters *)
    nmz[y_]:=Complement[Range[Total[y]], Total/@Subsets[y]]; Table[Length[Select[IntegerPartitions[n], nmz[#]=={}&]],{n,0,15}] (* Gus Wiseman, Oct 14 2023 *)
  • PARI
    {T(n,k)=if(k<=1,1,if(n<2*k-1,T(n,floor((n+1)/2)),T(n,k-1)+T(n-k,k)))}
    {a(n)=T(n,floor((n+1)/2))} /* If modified to save earlier results, this would be efficient. */ /* Franklin T. Adams-Watters, Mar 22 2007 */
    
  • PARI
    /* As coefficients in g.f.: */
    {a(n)=local(A=[1,1]);for(i=1,n+1,A=concat(A,0);A[#A]=polcoeff(1-sum(m=1,#A,A[m]*x^m*prod(k=1,m,1-x^k +x*O(x^#A))),#A) );A[n+1]}
    for(n=0,50,print1(a(n),",")) /* Paul D. Hanna, Mar 06 2012 */
    

Formula

G.f.: 1 = Sum_{n>=0} a(n)*x^n*Product_{k=1..n+1} (1-x^k). - Paul D. Hanna, Mar 08 2012
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*sqrt(3)*n) * (1 - (sqrt(3/2)/Pi + 25*Pi/(24*sqrt(6))) / sqrt(n) + (25/16 - 1679*Pi^2/6912)/n). - Vaclav Kotesovec, May 24 2018, extended Nov 02 2019
a(n) = A000041(n) - A365924(n). - Gus Wiseman, Oct 14 2023

Extensions

More terms from R. J. Mathar, Feb 27 2007
More terms from Emeric Deutsch, Mar 04 2007
Further terms from Franklin T. Adams-Watters and David W. Wilson, Mar 22 2007

A002219 a(n) is the number of partitions of 2n that can be obtained by adding together two (not necessarily distinct) partitions of n.

Original entry on oeis.org

1, 3, 6, 14, 25, 53, 89, 167, 278, 480, 760, 1273, 1948, 3089, 4682, 7177, 10565, 15869, 22911, 33601, 47942, 68756, 96570, 136883, 189674, 264297, 362995, 499617, 678245, 924522, 1243098, 1676339, 2237625, 2988351, 3957525, 5247500, 6895946, 9070144, 11850304
Offset: 1

Views

Author

Keywords

Examples

			Here are the seven partitions of 5: 1^5, 1^3 2, 1 2^2, 1^2 3, 2 3, 1 4, 5. Adding these together in pairs we get a(5) = 25 partitions of 10: 1^10, 1^8 2, 1^6 2^2, etc. (we get all partitions of 10 into parts of size <= 5 - there are 30 such partitions - except for five of them: we do not get 2 4^2, 3^2 4, 2^3 4, 1 3^3, 2^5). - _N. J. A. Sloane_, Jun 03 2012
From _Gus Wiseman_, Oct 27 2022: (Start)
The a(1) = 1 through a(4) = 14 partitions:
  (11)  (22)    (33)      (44)
        (211)   (321)     (422)
        (1111)  (2211)    (431)
                (3111)    (2222)
                (21111)   (3221)
                (111111)  (3311)
                          (4211)
                          (22211)
                          (32111)
                          (41111)
                          (221111)
                          (311111)
                          (2111111)
                          (11111111)
(End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column m=2 of A213086.
Bisection of A276107.
The strict version is A237258, ranked by A357854.
Ranked by A357976 = positions of nonzero terms in A357879.
A122768 counts distinct submultisets of partitions.
A304792 counts subset-sums of partitions, positive A276024, strict A284640.

Programs

  • Maple
    g:= proc(n, i) option remember;
         `if`(n=0, 1, `if`(i>1, g(n, i-1), 0)+`if`(i>n, 0, g(n-i, i)))
        end:
    b:= proc(n, i, s) option remember;
         `if`(i=1 and s<>{} or n in s, g(n, i), `if`(i<1 or s={}, 0,
          b(n, i-1, s)+ `if`(i>n, 0, b(n-i, i, map(x-> {`if`(x>n-i, NULL,
          max(x, n-i-x)), `if`(xn, NULL, max(x-i, n-x))}[], s)))))
        end:
    a:= n-> b(2*n, n, {n}):
    seq(a(n), n=1..25);  # Alois P. Heinz, Jul 10 2012
  • Mathematica
    b[n_, i_, s_] := b[n, i, s] = If[MemberQ[s, 0 | n], 0, If[n == 0, 1, If[i < 1, 0, b[n, i-1, s] + If[i <= n, b[n-i, i, Select[Flatten[Transpose[{s, s-i}]], 0 <= # <= n-i &]], 0]]]]; A006827[n_] := b[2*n, 2*n, {n}]; a[n_] := PartitionsP[2*n] - A006827[n]; Table[Print[an = a[n]]; an, {n, 1, 25}] (* Jean-François Alcover, Nov 12 2013, after Alois P. Heinz *)
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    subptns[s_]:=primeMS/@Divisors[Times@@Prime/@s];
    Table[Length[Select[IntegerPartitions[2n],MemberQ[Total/@subptns[#],n]&]],{n,10}] (* Gus Wiseman, Oct 27 2022 *)
  • Python
    from itertools import combinations_with_replacement
    from sympy.utilities.iterables import partitions
    def A002219(n): return len({tuple(sorted((p+q).items())) for p, q in combinations_with_replacement(tuple(Counter(p) for p in partitions(n)),2)}) # Chai Wah Wu, Sep 20 2023

Formula

See A213074 for Metropolis and Stein's formulas.
a(n) = A000041(2*n) - A006827(n) = A000041(2*n) - A046663(2*n,n).
a(n) = A276107(2*n). - Max Alekseyev, Oct 17 2022

Extensions

Better description from Vladeta Jovovic, Mar 06 2000
More terms from Christian G. Bower, Oct 12 2001
Edited by N. J. A. Sloane, Jun 03 2012
More terms from Alois P. Heinz, Jul 10 2012

A365543 Triangle read by rows where T(n,k) is the number of integer partitions of n with a submultiset summing to k.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 2, 2, 3, 5, 3, 3, 3, 5, 7, 5, 5, 5, 5, 7, 11, 7, 8, 6, 8, 7, 11, 15, 11, 11, 11, 11, 11, 11, 15, 22, 15, 17, 15, 14, 15, 17, 15, 22, 30, 22, 23, 23, 22, 22, 23, 23, 22, 30, 42, 30, 33, 30, 33, 25, 33, 30, 33, 30, 42
Offset: 0

Author

Gus Wiseman, Sep 16 2023

Keywords

Comments

Rows are palindromic.

Examples

			Triangle begins:
   1
   1   1
   2   1   2
   3   2   2   3
   5   3   3   3   5
   7   5   5   5   5   7
  11   7   8   6   8   7  11
  15  11  11  11  11  11  11  15
  22  15  17  15  14  15  17  15  22
  30  22  23  23  22  22  23  23  22  30
  42  30  33  30  33  25  33  30  33  30  42
  56  42  45  44  44  43  43  44  44  45  42  56
  77  56  62  58  62  56  53  56  62  58  62  56  77
Row n = 6 counts the following partitions:
  (6)       (51)      (42)      (33)      (42)      (51)      (6)
  (51)      (411)     (411)     (321)     (411)     (411)     (51)
  (42)      (321)     (321)     (3111)    (321)     (321)     (42)
  (411)     (3111)    (3111)    (2211)    (3111)    (3111)    (411)
  (33)      (2211)    (222)     (21111)   (222)     (2211)    (33)
  (321)     (21111)   (2211)    (111111)  (2211)    (21111)   (321)
  (3111)    (111111)  (21111)             (21111)   (111111)  (3111)
  (222)               (111111)            (111111)            (222)
  (2211)                                                      (2211)
  (21111)                                                     (21111)
  (111111)                                                    (111111)
		

Crossrefs

Columns k = 0 and k = n are A000041.
Central column n = 2k is A002219.
The complement is counted by A046663, strict A365663.
Row sums are A304792.
For subsets instead of partitions we have A365381.
The strict case is A365661.
A000009 counts subsets summing to n.
A000124 counts distinct possible sums of subsets of {1..n}.
A364272 counts sum-full strict partitions, sum-free A364349.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],MemberQ[Total/@Subsets[#],k]&]],{n,0,15},{k,0,n}]

A006827 Number of partitions of 2n with all subsums different from n.

Original entry on oeis.org

1, 2, 5, 8, 17, 24, 46, 64, 107, 147, 242, 302, 488, 629, 922, 1172, 1745, 2108, 3104, 3737, 5232, 6419, 8988, 10390, 14552, 17292, 23160, 27206, 36975, 41945, 57058, 65291, 85895, 99384, 130443, 145283, 193554, 218947, 281860, 316326, 413322, 454229, 594048
Offset: 1

Keywords

Comments

Partitions of this type are also called non-biquanimous partitions. - Gus Wiseman, Apr 19 2024

Examples

			From _Gus Wiseman_, Apr 19 2024: (Start)
The a(1) = 1 through a(5) = 17 partitions (A = 10):
  (2)  (4)   (6)    (8)     (A)
       (31)  (42)   (53)    (64)
             (51)   (62)    (73)
             (222)  (71)    (82)
             (411)  (332)   (91)
                    (521)   (433)
                    (611)   (442)
                    (5111)  (622)
                            (631)
                            (721)
                            (811)
                            (3331)
                            (4222)
                            (6211)
                            (7111)
                            (22222)
                            (61111)
(End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The complement is counted by A002219, ranks A357976.
Central diagonal of A046663.
The strict case is A321142, even bisection of A371794 (odd A078408).
This is the "bi-" version of A321451, ranks A321453.
Column k = 0 of A367094.
These partitions have Heinz numbers A371731.
Even bisection of A371795 (odd A058695).
A371783 counts k-quanimous partitions.

Programs

  • Maple
    b:= proc(n, i, s) option remember;
          `if`(0 in s or n in s, 0, `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, s)+
          `if`(i<=n, b(n-i, i, select(y-> 0<=y and y<=n-i,
                     map(x-> [x, x-i][], s))), 0))))
        end:
    a:= n-> b(2*n, 2*n, {n}):
    seq(a(n), n=1..25);  # Alois P. Heinz, Jul 10 2012
  • Mathematica
    b[n_, i_, s_] := b[n, i, s] = If[MemberQ[s, 0 | n], 0, If[n == 0, 1, If[i < 1, 0, b[n, i-1, s] + If[i <= n, b[n-i, i, Select[Flatten[Transpose[{s, s-i}]], 0 <= # <= n-i &]], 0]]]]; a[n_] := b[2*n, 2*n, {n}]; Table[Print[an = a[n]]; an, {n, 1, 25}] (* Jean-François Alcover, Nov 12 2013, after Alois P. Heinz *)
  • Python
    from itertools import combinations_with_replacement
    from collections import Counter
    from sympy import npartitions
    from sympy.utilities.iterables import partitions
    def A006827(n): return npartitions(n<<1)-len({tuple(sorted((p+q).items())) for p, q in combinations_with_replacement(tuple(Counter(p) for p in partitions(n)),2)}) # Chai Wah Wu, Sep 20 2023

Formula

a(n) = A000041(2*n) - A002219(n).
a(n) = A046663(2*n,n).

Extensions

More terms from Don Reble, Nov 03 2001
More terms from Alois P. Heinz, Jul 10 2012

A365661 Triangle read by rows where T(n,k) is the number of strict integer partitions of n with a submultiset summing to k.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 2, 1, 1, 2, 2, 1, 0, 1, 2, 3, 1, 1, 1, 1, 3, 4, 2, 2, 1, 2, 2, 4, 5, 2, 2, 2, 2, 2, 2, 5, 6, 3, 2, 3, 1, 3, 2, 3, 6, 8, 3, 3, 4, 3, 3, 4, 3, 3, 8, 10, 5, 4, 5, 4, 3, 4, 5, 4, 5, 10, 12, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 12
Offset: 0

Author

Gus Wiseman, Sep 16 2023

Keywords

Comments

First differs from A284593 at T(6,3) = 1, A284593(6,3) = 2.
Rows are palindromic.
Are there only two zeros in the whole triangle?

Examples

			Triangle begins:
  1
  1  1
  1  0  1
  2  1  1  2
  2  1  0  1  2
  3  1  1  1  1  3
  4  2  2  1  2  2  4
  5  2  2  2  2  2  2  5
  6  3  2  3  1  3  2  3  6
  8  3  3  4  3  3  4  3  3  8
Row n = 6 counts the following strict partitions:
  (6)      (5,1)    (4,2)    (3,2,1)  (4,2)    (5,1)    (6)
  (5,1)    (3,2,1)  (3,2,1)           (3,2,1)  (3,2,1)  (5,1)
  (4,2)                                                 (4,2)
  (3,2,1)                                               (3,2,1)
Row n = 10 counts the following strict partitions:
  A     91    82    73    64    532   64    73    82    91    A
  64    541   532   532   541   541   541   532   532   541   64
  73    631   721   631   631   4321  631   631   721   631   73
  82    721   4321  721   4321        4321  721   4321  721   82
  91    4321        4321                    4321        4321  91
  532                                                         532
  541                                                         541
  631                                                         631
  721                                                         721
  4321                                                        4321
		

Crossrefs

Columns k = 0 and k = n are A000009.
The non-strict complement is A046663, central column A006827.
Central column n = 2k is A237258.
For subsets instead of partitions we have A365381.
The non-strict case is A365543.
The complement is A365663.
A000124 counts distinct possible sums of subsets of {1..n}.
A364272 counts sum-full strict partitions, sum-free A364349.

Programs

  • Mathematica
    Table[Length[Select[Select[IntegerPartitions[n], UnsameQ@@#&], MemberQ[Total/@Subsets[#],k]&]], {n,0,10},{k,0,n}]

A365663 Triangle read by rows where T(n,k) is the number of strict integer partitions of n without a subset summing to k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 3, 5, 3, 4, 3, 5, 5, 4, 5, 5, 4, 5, 5, 5, 6, 5, 6, 7, 6, 5, 6, 5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 8, 8, 8, 11, 8, 8, 8, 9, 8, 10, 11, 10, 10, 10, 10, 10, 10, 10, 10, 11, 10, 12, 13, 11, 13, 11, 12, 15, 12, 11, 13, 11, 13, 12
Offset: 2

Author

Gus Wiseman, Sep 17 2023

Keywords

Comments

Warning: Do not confuse with the non-strict version A046663.
Rows are palindromes.

Examples

			Triangle begins:
  1
  1  1
  1  2  1
  2  2  2  2
  2  2  3  2  2
  3  3  3  3  3  3
  3  4  3  5  3  4  3
  5  5  4  5  5  4  5  5
  5  6  5  6  7  6  5  6  5
  7  7  7  7  7  7  7  7  7  7
  8  9  8  8  8 11  8  8  8  9  8
Row n = 8 counts the following strict partitions:
  (8)    (8)      (8)    (8)      (8)    (8)      (8)
  (6,2)  (7,1)    (7,1)  (7,1)    (7,1)  (7,1)    (6,2)
  (5,3)  (5,3)    (6,2)  (6,2)    (6,2)  (5,3)    (5,3)
         (4,3,1)         (5,3)           (4,3,1)
                         (5,2,1)
		

Crossrefs

Columns k = 0 and k = n are A025147.
The non-strict version is A046663, central column A006827.
Central column n = 2k is A321142.
The complement for subsets instead of strict partitions is A365381.
The complement is A365661, non-strict A365543, central column A237258.
Row sums are A365922.
A000009 counts subsets summing to n.
A000124 counts distinct possible sums of subsets of {1..n}.
A124506 appears to count combination-free subsets, differences of A326083.
A364272 counts sum-full strict partitions, sum-free A364349.
A364350 counts combination-free strict partitions, complement A364839.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&FreeQ[Total/@Subsets[#],k]&]], {n,2,15},{k,1,n-1}]

A365658 Triangle read by rows where T(n,k) is the number of integer partitions of n with k distinct possible sums of nonempty submultisets.

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 1, 1, 1, 2, 1, 0, 2, 0, 4, 1, 1, 3, 0, 1, 5, 1, 0, 3, 0, 3, 0, 8, 1, 1, 3, 2, 2, 1, 2, 10, 1, 0, 5, 0, 3, 0, 5, 0, 16, 1, 1, 4, 0, 6, 2, 4, 2, 2, 20, 1, 0, 5, 0, 5, 0, 8, 0, 6, 0, 31, 1, 1, 6, 2, 3, 6, 6, 1, 4, 4, 4, 39, 1, 0, 6, 0, 6, 0, 12, 0, 8, 0, 13, 0, 55
Offset: 1

Author

Gus Wiseman, Sep 16 2023

Keywords

Comments

Conjecture: Positions of strictly positive rows are given by A048166.

Examples

			Triangle begins:
  1
  1  1
  1  0  2
  1  1  1  2
  1  0  2  0  4
  1  1  3  0  1  5
  1  0  3  0  3  0  8
  1  1  3  2  2  1  2 10
  1  0  5  0  3  0  5  0 16
  1  1  4  0  6  2  4  2  2 20
  1  0  5  0  5  0  8  0  6  0 31
  1  1  6  2  3  6  6  1  4  4  4 39
  1  0  6  0  6  0 12  0  8  0 13  0 55
  1  1  6  0  6  3 16  3  5  3  7  8  5 71
		

Crossrefs

Row sums are A000041.
Last column n = k is A126796.
Column k = 3 appears to be A137719.
This is the triangle for the rank statistic A299701.
Central column n = 2k is A365660.
A000009 counts subsets summing to n.
A000124 counts distinct possible sums of subsets of {1..n}.
A365543 counts partitions with a submultiset summing to k, strict A365661.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Union[Total/@Rest[Subsets[#]]]]==k&]],{n,10},{k,n}]

A068911 Number of n-step walks (each step +-1 starting from 0) which are never more than 2 or less than -2.

Original entry on oeis.org

1, 2, 4, 6, 12, 18, 36, 54, 108, 162, 324, 486, 972, 1458, 2916, 4374, 8748, 13122, 26244, 39366, 78732, 118098, 236196, 354294, 708588, 1062882, 2125764, 3188646, 6377292, 9565938, 19131876, 28697814, 57395628, 86093442, 172186884, 258280326, 516560652
Offset: 0

Author

Henry Bottomley, Mar 06 2002

Keywords

Comments

From Johannes W. Meijer, May 29 2010: (Start)
a(n) is the number of ways White can force checkmate in exactly (n+1) moves, n >= 0, ignoring the fifty-move and the triple repetition rules, in the following chess position: White Ka1, Ra8, Bc1, Nb8, pawns a6, a7, b2, c6, d2, f6, g5 and h6; Black Ke8, Nh8, pawns b3, c7, d3, f7, g6 and h7. (After Noam D. Elkies, see link; diagram 5).
Counts all paths of length n, n >= 0, starting at the third node on the path graph P_5, see the Maple program. (End)
From Alec Jones, Feb 25 2016: (Start)
The a(n) are the n-th terms in a "Fibonacci snake" drawn on a rectilinear grid. The n-th term is computed as the sum of the previous terms in cells adjacent to the n-th cell (diagonals included). (This sequence excludes the first term of the snake.)
For example:
1 ... 1 1 ... 1 4 1 4 6 ... 1 4 6 1 4 6 ... and so on.
1 ... 1 2 1 2 ... 1 2 1 2 12 ... 1 2 12 18 (End)
From Gus Wiseman, Oct 06 2023: (Start)
Also the number of subsets of {1..n} containing no two distinct elements summing to n. The a(0) = 1 through a(4) = 12 subsets are:
{} {} {} {} {}
{1} {1} {1} {1}
{2} {2} {2}
{1,2} {3} {3}
{1,3} {4}
{2,3} {1,2}
{1,4}
{2,3}
{2,4}
{3,4}
{1,2,4}
{2,3,4}
For n+1 instead of n we have A038754, complement A167762.
Including twins gives A117855, complement A366131.
The complement is counted by A365544.
For all subsets (not just pairs) we have A365377, complement A365376. (End)

Examples

			The a(3) = 6 walks: (0,-1,-2,-1), (0,-1,0,-1), (0,-1,0,1), (0,1,0,-1), (0,1,0,1), (0,1,2,1). - _Gus Wiseman_, Oct 10 2023
		

Crossrefs

Cf. A000007, A016116 (without initial term), A068912, A068913 for similar.
Equals A060647(n-1)+1.
First differences are A117855.

Programs

  • Magma
    [Floor((5-(-1)^n)*3^Floor(n/2)/3): n in [0..40]]; // Bruno Berselli, Feb 26 2016, after Charles R Greathouse IV
    
  • Maple
    with(GraphTheory): G:= PathGraph(5): A:=AdjacencyMatrix(G): nmax:=34; for n from 0 to nmax do B(n):=A^n; a(n):=add(B(n)[3,k], k=1..5) od: seq(a(n), n=0..nmax); # Johannes W. Meijer, May 29 2010
    # second Maple program:
    a:= proc(n) a(n):= `if`(n<2, n+1, (4-irem(n, 2))/2*a(n-1)) end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Feb 03 2019
  • Mathematica
    Join[{1},Transpose[NestList[{Last[#],3First[#]}&,{2,4},40]][[1]]] (* Harvey P. Dale, Oct 24 2011 *)
    Table[Length[Select[Subsets[Range[n]],FreeQ[Total/@Subsets[#,{2}],n]&]],{n,0,15}] (* Gus Wiseman, Oct 06 2023 *)
  • PARI
    a(n)=[4,6][n%2+1]*3^(n\2)\3 \\ Charles R Greathouse IV, Feb 26 2016
    
  • Python
    def A068911(n): return 3**(n>>1)<<1 if n&1 else (3**(n-1>>1)<<2 if n else 1) # Chai Wah Wu, Aug 30 2024

Formula

a(n) = A068913(2, n) = 2*A038754(n-1) = 3*a(n-2) = a(n-1)*a(n-2)/a(n-3) starting with a(0)=1, a(1)=2, a(2)=4 and a(3)=6.
For n>0: a(2n) = 4*3^(n-1) = 2*a(2n-1); a(2n+1) = 2*3^n = 3*a(2n)/2 = 2*a(2n)-A000079(n-2).
From Paul Barry, Feb 17 2004: (Start)
G.f.: (1+x)^2/(1-3x^2).
a(n) = 2*3^((n+1)/2)*((1-(-1)^n)/6 + sqrt(3)*(1+(-1)^n)/9) - (1/3)*0^n.
The sequence 0, 1, 2, 4, ... has a(n) = 2*3^(n/2)*((1+(-1)^n)/6 + sqrt(3)*(1-(-1)^n)/9) - (2/3)*0^n + (1/3)*Sum_{k=0..n} binomial(n, k)*k*(-1)^k. (End)
a(n) = 2^((3 + (-1)^n)/2)*3^((2*n - 3 - (-1)^n)/4) - ((1 - (-1)^(2^n)))/6. - Luce ETIENNE, Aug 30 2014
For n > 2, indexing from 0, a(n) = a(n-1) + a(n-2) if n is odd, a(n-1) + a(n-2) + a(n-3) if n is even. - Alec Jones, Feb 25 2016
a(n) = 2*a(n-1) if n is even, a(n-1) + a(n-2) if n is odd. - Vincenzo Librandi, Feb 26 2016
E.g.f.: (4*cosh(sqrt(3)*x) + 2*sqrt(3)*sinh(sqrt(3)*x) - 1)/3. - Stefano Spezia, Feb 17 2022

A365924 Number of incomplete integer partitions of n, meaning not every number from 0 to n is the sum of some submultiset.

Original entry on oeis.org

0, 0, 1, 1, 3, 3, 6, 7, 12, 14, 22, 25, 38, 46, 64, 76, 106, 124, 167, 199, 261, 309, 402, 471, 604, 714, 898, 1053, 1323, 1542, 1911, 2237, 2745, 3201, 3913, 4536, 5506, 6402, 7706, 8918, 10719, 12364, 14760, 17045, 20234, 23296, 27600, 31678, 37365, 42910, 50371, 57695, 67628, 77300, 90242, 103131, 119997
Offset: 0

Author

Gus Wiseman, Sep 26 2023

Keywords

Comments

The complement (complete partitions) is A126796.

Examples

			The a(0) = 0 through a(8) = 12 partitions:
  .  .  (2)  (3)  (4)    (5)    (6)      (7)      (8)
                  (2,2)  (3,2)  (3,3)    (4,3)    (4,4)
                  (3,1)  (4,1)  (4,2)    (5,2)    (5,3)
                                (5,1)    (6,1)    (6,2)
                                (2,2,2)  (3,2,2)  (7,1)
                                (4,1,1)  (3,3,1)  (3,3,2)
                                         (5,1,1)  (4,2,2)
                                                  (4,3,1)
                                                  (5,2,1)
                                                  (6,1,1)
                                                  (2,2,2,2)
                                                  (5,1,1,1)
		

Crossrefs

For parts instead of sums we have A047967/A365919, ranks A080259/A055932.
The complement is A126796, ranks A325781, strict A188431.
These partitions have ranks A365830.
The strict case is A365831.
Row sums of A365923 without the first column, strict A365545.
A000041 counts integer partitions, strict A000009.
A046663 counts partitions w/o a submultiset summing to k, strict A365663.
A276024 counts positive subset-sums of partitions, strict A284640.
A325799 counts non-subset-sums of prime indices.
A364350 counts combination-free strict partitions.
A365543 counts partitions with a submultiset summing to k, strict A365661.

Programs

  • Mathematica
    nmz[y_]:=Complement[Range[Total[y]],Total/@Subsets[y]];
    Table[Length[Select[IntegerPartitions[n],Length[nmz[#]]>0&]],{n,0,15}]

Formula

a(n) = A000041(n) - A126796(n).

A365541 Irregular triangle read by rows where T(n,k) is the number of subsets of {1..n} containing two distinct elements summing to k = 3..2n-1.

Original entry on oeis.org

1, 2, 2, 2, 4, 4, 7, 4, 4, 8, 8, 14, 14, 14, 8, 8, 16, 16, 28, 28, 37, 28, 28, 16, 16, 32, 32, 56, 56, 74, 74, 74, 56, 56, 32, 32, 64, 64, 112, 112, 148, 148, 175, 148, 148, 112, 112, 64, 64, 128, 128, 224, 224, 296, 296, 350, 350, 350, 296, 296, 224, 224, 128, 128
Offset: 2

Author

Gus Wiseman, Sep 15 2023

Keywords

Comments

Rows are palindromic.

Examples

			Triangle begins:
    1
    2    2    2
    4    4    7    4    4
    8    8   14   14   14    8    8
   16   16   28   28   37   28   28   16   16
   32   32   56   56   74   74   74   56   56   32   32
Row n = 4 counts the following subsets:
  {1,2}      {1,3}      {1,4}      {2,4}      {3,4}
  {1,2,3}    {1,2,3}    {2,3}      {1,2,4}    {1,3,4}
  {1,2,4}    {1,3,4}    {1,2,3}    {2,3,4}    {2,3,4}
  {1,2,3,4}  {1,2,3,4}  {1,2,4}    {1,2,3,4}  {1,2,3,4}
                        {1,3,4}
                        {2,3,4}
                        {1,2,3,4}
		

Crossrefs

Row lengths are A005408.
The case counting only length-2 subsets is A008967.
Column k = n + 1 appears to be A167762.
The version for all subsets (instead of just pairs) is A365381.
Column k = n is A365544.
A000009 counts subsets summing to n.
A007865/A085489/A151897 count certain types of sum-free subsets.
A046663 counts partitions with no submultiset summing to k, strict A365663.
A093971/A088809/A364534 count certain types of sum-full subsets.
A365543 counts partitions with a submultiset summing to k, strict A365661.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], MemberQ[Total/@Subsets[#,{2}],k]&]], {n,2,11}, {k,3,2n-1}]
Showing 1-10 of 55 results. Next