cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 34 results. Next

A048675 If n = p_i^e_i * ... * p_k^e_k, p_i < ... < p_k primes (with p_i = prime(i)), then a(n) = (1/2) * (e_i * 2^i + ... + e_k * 2^k).

Original entry on oeis.org

0, 1, 2, 2, 4, 3, 8, 3, 4, 5, 16, 4, 32, 9, 6, 4, 64, 5, 128, 6, 10, 17, 256, 5, 8, 33, 6, 10, 512, 7, 1024, 5, 18, 65, 12, 6, 2048, 129, 34, 7, 4096, 11, 8192, 18, 8, 257, 16384, 6, 16, 9, 66, 34, 32768, 7, 20, 11, 130, 513, 65536, 8, 131072, 1025, 12, 6, 36, 19
Offset: 1

Views

Author

Antti Karttunen, Jul 14 1999

Keywords

Comments

The original motivation for this sequence was to encode the prime factorization of n in the binary representation of a(n), each such representation being unique as long as this map is restricted to A005117 (squarefree numbers, resulting a permutation of nonnegative integers A048672) or any of its subsequence, resulting an injective function like A048623 and A048639.
However, also the restriction to A260443 (not all terms of which are squarefree) results a permutation of nonnegative integers, namely A001477, the identity permutation.
When a polynomial with nonnegative integer coefficients is encoded with the prime factorization of n (e.g., as in A206296, A260443), then a(n) gives the evaluation of that polynomial at x=2.
The primitive completely additive integer sequence that satisfies a(n) = a(A225546(n)), n >= 1. By primitive, we mean that if b is another such sequence, then there is an integer k such that b(n) = k * a(n) for all n >= 1. - Peter Munn, Feb 03 2020
If the binary rank of an integer partition y is given by Sum_i 2^(y_i-1), and the Heinz number is Product_i prime(y_i), then a(n) is the binary rank of the integer partition with Heinz number n. Note the function taking a set s to Sum_i 2^(s_i-1) is the inverse of A048793 (binary indices), and the function taking a multiset m to Product_i prime(m_i) is the inverse of A112798 (prime indices). - Gus Wiseman, May 22 2024

Examples

			From _Gus Wiseman_, May 22 2024: (Start)
The A018819(7) = 6 cases of binary rank 7 are the following, together with their prime indices:
   30: {1,2,3}
   40: {1,1,1,3}
   54: {1,2,2,2}
   72: {1,1,1,2,2}
   96: {1,1,1,1,1,2}
  128: {1,1,1,1,1,1,1}
(End)
		

Crossrefs

Row 2 of A104244.
Similar logarithmic functions: A001414, A056239, A090880, A289506, A293447.
Left inverse of the following sequences: A000079, A019565, A038754, A068911, A134683, A260443, A332824.
A003961, A028234, A032742, A055396, A064989, A067029, A225546, A297845 are used to express relationship between terms of this sequence.
Cf. also A048623, A048676, A099884, A277896 and tables A277905, A285325.
Cf. A297108 (Möbius transform), A332813 and A332823 [= a(n) mod 3].
Pairs of sequences (f,g) that satisfy a(f(n)) = g(n), possibly with offset change: (A000203,A331750), (A005940,A087808), (A007913,A248663), (A007947,A087207), (A097248,A048675), (A206296,A000129), (A248692,A056239), (A283477,A005187), (A284003,A006068), (A285101,A028362), (A285102,A068052), (A293214,A001065), (A318834,A051953), (A319991,A293897), (A319992,A293898), (A320017,A318674), (A329352,A069359), (A332461,A156552), (A332462,A156552), (A332825,A000010) and apparently (A163511,A135529).
See comments/formulas in A277333, A331591, A331740 giving their relationship to this sequence.
The formula section details how the sequence maps the terms of A329050, A329332.
A277892, A322812, A322869, A324573, A324575 give properties of the n-th term of this sequence.
The term k appears A018819(k) times.
The inverse transformation is A019565 (Heinz number of binary indices).
The version for distinct prime indices is A087207.
Numbers k such that a(k) is prime are A277319, counts A372688.
Grouping by image gives A277905.
A014499 lists binary indices of prime numbers.
A061395 gives greatest prime index, least A055396.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.
Binary indices:
- listed A048793, sum A029931
- reversed A272020
- opposite A371572, sum A230877
- length A000120, complement A023416
- min A001511, opposite A000012
- max A070939, opposite A070940
- complement A368494, sum A359400
- opposite complement A371571, sum A359359

Programs

  • Maple
    nthprime := proc(n) local i; if(isprime(n)) then for i from 1 to 1000000 do if(ithprime(i) = n) then RETURN(i); fi; od; else RETURN(0); fi; end; # nthprime(2) = 1, nthprime(3) = 2, nthprime(5) = 3, etc. - this is also A049084.
    A048675 := proc(n) local s,d; s := 0; for d in ifactors(n)[ 2 ] do s := s + d[ 2 ]*(2^(nthprime(d[ 1 ])-1)); od; RETURN(s); end;
    # simpler alternative
    f:= n -> add(2^(numtheory:-pi(t[1])-1)*t[2], t=ifactors(n)[2]):
    map(f, [$1..100]); # Robert Israel, Oct 10 2016
  • Mathematica
    a[1] = 0; a[n_] := Total[ #[[2]]*2^(PrimePi[#[[1]]]-1)& /@ FactorInteger[n] ]; Array[a, 100] (* Jean-François Alcover, Mar 15 2016 *)
  • PARI
    a(n) = my(f = factor(n)); sum(k=1, #f~, f[k,2]*2^primepi(f[k,1]))/2; \\ Michel Marcus, Oct 10 2016
    
  • PARI
    \\ The following program reconstructs terms (e.g. for checking purposes) from the factorization file prepared by Hans Havermann:
    v048675sigs = readvec("a048675.txt");
    A048675(n) = if(n<=2,n-1,my(prsig=v048675sigs[n],ps=prsig[1],es=prsig[2]); prod(i=1,#ps,ps[i]^es[i])); \\ Antti Karttunen, Feb 02 2020
    
  • Python
    from sympy import factorint, primepi
    def a(n):
        if n==1: return 0
        f=factorint(n)
        return sum([f[i]*2**(primepi(i) - 1) for i in f])
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jun 19 2017

Formula

a(1) = 0, a(n) = 1/2 * (e1*2^i1 + e2*2^i2 + ... + ez*2^iz) if n = p_{i1}^e1*p_{i2}^e2*...*p_{iz}^ez, where p_i is the i-th prime. (e.g. p_1 = 2, p_2 = 3).
Totally additive with a(p^e) = e * 2^(PrimePi(p)-1), where PrimePi(n) = A000720(n). [Missing factor e added to the comment by Antti Karttunen, Jul 29 2015]
From Antti Karttunen, Jul 29 2015: (Start)
a(1) = 0; for n > 1, a(n) = 2^(A055396(n)-1) + a(A032742(n)). [Where A055396(n) gives the index of the smallest prime dividing n and A032742(n) gives the largest proper divisor of n.]
a(1) = 0; for n > 1, a(n) = (A067029(n) * (2^(A055396(n)-1))) + a(A028234(n)).
Other identities. For all n >= 0:
a(A019565(n)) = n.
a(A260443(n)) = n.
a(A206296(n)) = A000129(n).
a(A005940(n+1)) = A087808(n).
a(A007913(n)) = A248663(n).
a(A007947(n)) = A087207(n).
a(A283477(n)) = A005187(n).
a(A284003(n)) = A006068(n).
a(A285101(n)) = A028362(1+n).
a(A285102(n)) = A068052(n).
Also, it seems that a(A163511(n)) = A135529(n) for n >= 1. (End)
a(1) = 0, a(2n) = 1+a(n), a(2n+1) = 2*a(A064989(2n+1)). - Antti Karttunen, Oct 11 2016
From Peter Munn, Jan 31 2020: (Start)
a(n^2) = a(A003961(n)) = 2 * a(n).
a(A297845(n,k)) = a(n) * a(k).
a(n) = a(A225546(n)).
a(A329332(n,k)) = n * k.
a(A329050(n,k)) = 2^(n+k).
(End)
From Antti Karttunen, Feb 02-25 2020, Feb 01 2021: (Start)
a(n) = Sum_{d|n} A297108(d) = Sum_{d|A225546(n)} A297108(d).
a(n) = a(A097248(n)).
For n >= 2:
A001221(a(n)) = A322812(n), A001222(a(n)) = A277892(n).
A000203(a(n)) = A324573(n), A033879(a(n)) = A324575(n).
For n >= 1, A331750(n) = a(A000203(n)).
For n >= 1, the following chains hold:
A293447(n) >= a(n) >= A331740(n) >= A331591(n).
a(n) >= A087207(n) >= A248663(n).
(End)
a(n) = A087207(A097248(n)). - Flávio V. Fernandes, Jul 16 2025

Extensions

Entry revised by Antti Karttunen, Jul 29 2015
More linking formulas added by Antti Karttunen, Apr 18 2017

A038754 a(2n) = 3^n, a(2n+1) = 2*3^n.

Original entry on oeis.org

1, 2, 3, 6, 9, 18, 27, 54, 81, 162, 243, 486, 729, 1458, 2187, 4374, 6561, 13122, 19683, 39366, 59049, 118098, 177147, 354294, 531441, 1062882, 1594323, 3188646, 4782969, 9565938, 14348907, 28697814, 43046721, 86093442, 129140163, 258280326, 387420489
Offset: 0

Views

Author

Henry Bottomley, May 03 2000

Keywords

Comments

In general, for the recurrence a(n) = a(n-1)*a(n-2)/a(n-3), all terms are integers iff a(0) divides a(2) and first three terms are positive integers, since a(2n+k) = a(k)*(a(2)/a(0))^n for all nonnegative integers n and k.
Equals eigensequence of triangle A070909; (1, 1, 2, 3, 6, 9, 18, ...) shifts to the left with multiplication by triangle A070909. - Gary W. Adamson, May 15 2010
The a(n) represent all paths of length (n+1), n >= 0, starting at the initial node on the path graph P_5, see the second Maple program. - Johannes W. Meijer, May 29 2010
a(n) is the difference between numbers of multiple of 3 evil (A001969) and odious (A000069) numbers in interval [0, 2^(n+1)). - Vladimir Shevelev, May 16 2012
A "half-geometric progression": to obtain a term (beginning with the third one) we multiply the before previous one by 3. - Vladimir Shevelev, May 21 2012
Pisano periods: 1, 2, 1, 4, 8, 2, 12, 4, 1, 8, 10, 4, 6, 12, 8, 8, 32, 2, 36, 8, ... . - R. J. Mathar, Aug 10 2012
Numbers k such that the k-th cyclotomic polynomial has a root mod 3. - Eric M. Schmidt, Jul 31 2013
Range of row n of the circular Pascal array of order 6. - Shaun V. Ault, Jun 05 2014
Also, the number of walks of length n on the graph 0--1--2--3--4 starting at vertex 1. - Sean A. Irvine, Jun 03 2025

Examples

			In the interval [0,2^5) we have 11 multiples of 3 numbers, from which 10 are evil and only one (21) is odious. Thus a(4) = 10 - 1 = 9. - _Vladimir Shevelev_, May 16 2012
		

Crossrefs

Programs

  • Haskell
    import Data.List (transpose)
    a038754 n = a038754_list !! n
    a038754_list = concat $ transpose [a000244_list, a008776_list]
    -- Reinhard Zumkeller, Oct 19 2015
    
  • Magma
    [n le 2 select n else 3*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Aug 18 2016
    
  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=3*a[n-2]+2 od: seq(a[n]+1, n=0..34); # Zerinvary Lajos, Mar 20 2008
    with(GraphTheory): P:=5: G:=PathGraph(P): A:= AdjacencyMatrix(G): nmax:=35; for n from 1 to nmax do B(n):=A^n; a(n):=add(B(n)[1,k],k=1..P) od: seq(a(n),n=1..nmax); # Johannes W. Meijer, May 29 2010
  • Mathematica
    LinearRecurrence[{0,3},{1,2},40] (* Harvey P. Dale, Jan 26 2014 *)
    CoefficientList[Series[(1+2x)/(1-3x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 18 2016 *)
    Module[{nn=20,c},c=3^Range[0,nn];Riffle[c,2c]] (* Harvey P. Dale, Aug 21 2021 *)
  • PARI
    a(n)=(1/6)*(5-(-1)^n)*3^floor(n/2)
    
  • PARI
    a(n)=3^(n>>1)<
    				
  • SageMath
    [2^(n%2)*3^((n-(n%2))/2) for n in range(61)] # G. C. Greubel, Oct 10 2022

Formula

a(n) = a(n-1)*a(n-2)/a(n-3) with a(0)=1, a(1)=2, a(2)=3.
a(2*n) = (3/2)*a(2*n-1) = 3^n, a(2*n+1) = 2*a(2*n) = 2*3^n.
From Benoit Cloitre, Apr 27 2003: (Start)
a(1)=1, a(n)= 2*a(n-1) if a(n-1) is odd, or a(n)= (3/2)*a(n-1) if a(n-1) is even.
a(n) = (1/6)*(5-(-1)^n)*3^floor(n/2).
a(2*n) = a(2*n-1) + a(2*n-2) + a(2*n-3).
a(2*n+1) = a(2*n) + a(2*n-1). (End)
G.f.: (1+2*x)/(1-3*x^2). - Paul Barry, Aug 25 2003
From Reinhard Zumkeller, Sep 11 2003: (Start)
a(n) = (1 + n mod 2) * 3^floor(n/2).
a(n) = A087503(n) - A087503(n-1). (End)
a(n) = sqrt(3)*(2+sqrt(3))*(sqrt(3))^n/6 - sqrt(3)*(2-sqrt(3))*(-sqrt(3))^n/6. - Paul Barry, Sep 16 2003
From Reinhard Zumkeller, May 26 2008: (Start)
a(n) = A140740(n+2,2).
a(n+1) = a(n) + a(n - n mod 2). (End)
If p(i) = Fibonacci(i-3) and if A is the Hessenberg matrix of order n defined by A(i,j) = p(j-i+1), (i<=j), A(i,j)=-1, (i=j+1), and A(i,j)=0 otherwise. Then, for n>=1, a(n-1) = (-1)^n det A. - Milan Janjic, May 08 2010
a(n) = A182751(n) for n >= 2. - Jaroslav Krizek, Nov 27 2010
a(n) = Sum_{i=0..2^(n+1), i==0 (mod 3)} (-1)^A000120(i). - Vladimir Shevelev, May 16 2012
a(0)=1, a(1)=2, for n>=3, a(n)=3*a(n-2). - Vladimir Shevelev, May 21 2012
Sum_(n>=0) 1/a(n) = 9/4. - Alexander R. Povolotsky, Aug 24 2012
a(n) = sqrt(3*a(n-1)^2 + (-3)^(n-1)). - Richard R. Forberg, Sep 04 2013
a(n) = 2^((1-(-1)^n)/2)*3^((2*n-1+(-1)^n)/4). - Luce ETIENNE, Aug 11 2014
From Reinhard Zumkeller, Oct 19 2015: (Start)
a(2*n) = A000244(n), a(2*n+1) = A008776(n).
For n > 0: a(n+1) = a(n) + if a(n) odd then min{a(n), a(n-1)} else max{a(n), a(n-1)}, see also A128588. (End)
E.g.f.: (7*cosh(sqrt(3)*x) + 4*sqrt(3)*sinh(sqrt(3)*x) - 4)/3. - Stefano Spezia, Feb 17 2022
Sum_{n>=0} (-1)^n/a(n) = 3/4. - Amiram Eldar, Dec 02 2022

A008967 Coefficients of Gaussian polynomials q_binomial(n-2, 2). Also triangle of distribution of rank sums: Wilcoxon's statistic. Irregular triangle read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 2, 3, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 3, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 4, 3, 3, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 3, 3, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 4, 4, 3, 3, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1
Offset: 4

Views

Author

Keywords

Comments

Rows are numbers of dominoes with k spots where each half-domino has zero to n spots (in standard domino set: n=6, there are 28 dominoes and row is 1,1,2,2,3,3,4,3,3,2,2,1,1). - Henry Bottomley, Aug 23 2000
These numbers appear in the solution of Cayley's counting problem on covariants as N(p,2,w) = [x^p,q^w] Phi(q,x) with the o.g.f. Phi(q,x) = 1/((1-x)(1-qx)(1-q^2x)) given by Peter Bala in the formula section. See the Hawkins reference, p. 264, were also references are given. - Wolfdieter Lang, Nov 30 2012
The entry a(p,w), p >= 0, w = 0,1,...,2*p, of this irregular triangle is the number of nonnegative solutions of m_0 + m_1 + m_2 = p and 1*m_1 + 2*m_2 = w. See the Hawkins reference p. 264, (4.8). N(p,2,w) there is a(p,w). See also the Cayley reference p. 110, 35. with m = 2, Theta = p and q = w. - Wolfdieter Lang, Dec 01 2012
From Gus Wiseman, Sep 20 2023: (Start)
Also the number of unordered pairs of distinct positive integers up to n with sum k. For example, row n = 9 counts the following pairs:
12 13 14 15 16 17 18 19 29 39 49 59 69 79 89
23 24 25 26 27 28 38 48 58 68 78
34 35 36 37 47 57 67
45 46 56
Allowing repeated parts (x,x) gives A004737.
For strict partitions instead of just pairs we have A053632.
(End)

Examples

			1;
1,1,1;
1,1,2,1,1;
1,1,2,2,2,1,1;
1,1,2,2,3,2,2,1,1;
1,1,2,2,3,3,3,2,2,1,1;
...
Partitions: row p=2 and column w=2 has entry 2 because the 2 solutions of the two equations mentioned in a comment above are: m_0 = 0, m_1 = 2, m_2 = 0 and m_0 = 1, m_1 = 0, m_2 = 1. - _Wolfdieter Lang_, Dec 01 2012
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 242.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 236.
  • T. Hawkins, Emergence of the Theory of Lie Groups, Springer 2000, ch. 7.4, p. 260-5.

Crossrefs

A version with zeros is A219238.
This is the case of A365541 counting only length-2 subsets.

Programs

  • Maple
    qBinom := proc(n,m,q)
            mul((1-q^(n-i))/(1-q^(i+1)),i=0..m-1) ;
            factor(%) ;
            expand(%) ;
    end proc:
    A008967 := proc(n,k)
            coeftayl( qBinom(n,2,q),q=0,k ) ;
    end proc:
    seq(seq( A008967(n,k),k=0..2*n-4),n=2..10) ; # assumes offset 2. R. J. Mathar, Oct 13 2011
  • Mathematica
    rmax = 11; f[r_] := Product[(x^i - x^(r+1))/(1-x^i), {i, 1, r-2}]/  x^((r-1)*(r-2)/2); row[r_] := CoefficientList[ Series[ f[r], {x, 0, 2rmax}], x]; Flatten[ Table[ row[r], {r, 2, rmax}]] (* Jean-François Alcover, Oct 13 2011, after given formula *)
    T[n_, k_] := SeriesCoefficient[QBinomial[n - 2, 2, q], {q, 0, k}];
    Table[T[n, k], {n, 4, 13}, {k, 0, 2 n - 8}] // Flatten (* Jean-François Alcover, Aug 20 2019 *)
    Table[Length[Select[Subsets[Range[n],{2}],Total[#]==k&]],{n,2,15},{k,3,2n-1}] (* Gus Wiseman, Sep 20 2023 *)
  • SageMath
    print(flatten([q_binomial(n-2, 2).list() for n in (4..13)])) # Peter Luschny, Oct 23 2019

Formula

Let f(r) = Product( (x^i-x^(r+1))/(1-x^i), i = 1..r-2) / x^((r-1)*(r-2)/2); then expanding f(r) in powers of x and taking coefficients gives the successive rows of this triangle (with a different offset).
Expanding (q^n - 1)(q^(n+1) - 1)/((q - 1)(q^2 - 1)) in powers of q and taking coefficients gives the n-th row of the triangle. Ordinary generating function: 1/((1-x)(1-qx)(1-q^2x)) = 1 + x(1 + q + q^2) + x^2(1 + q + 2q^2 + q^3 + q^4) + .... - Peter Bala, Sep 23 2007
For n >= 2, let a(n,i) denote the i-th entry of the (n-1)-st row of this triangle; for every 0 <= i <= n-2, a(n,i) = a(n,2(n-2)-i) = ceiling((i+1)/2). - Christian Barrientos, Aug 08 2019

Extensions

More terms from Christian Barrientos, Aug 08 2019

A028495 Expansion of g.f. (1-x^2)/(1-x-2*x^2+x^3).

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 19, 33, 61, 108, 197, 352, 638, 1145, 2069, 3721, 6714, 12087, 21794, 39254, 70755, 127469, 229725, 413908, 745889, 1343980, 2421850, 4363921, 7863641, 14169633, 25532994, 46008619, 82904974, 149389218, 269190547, 485064009, 874055885
Offset: 0

Views

Author

Keywords

Comments

Form the graph with matrix A = [0,1,1; 1,0,0; 1,0,1] (P_3 with a loop at an extremity). Then A028495 counts closed walks of length n at the degree 3 vertex. - Paul Barry, Oct 02 2004
Equals INVERT transform of (1, 1, 0, 1, 0, 1, 0, 1, ...). - Gary W. Adamson, Apr 28 2009
From Johannes W. Meijer, May 29 2010: (Start)
a(n) is the number of ways White can force checkmate in exactly (n+1) moves, n>=0, ignoring the fifty-move and the triple repetition rules, in the following chess position: White Ka1, Ra8, Bc1, Nb8, pawns a6, a7, b2, c6, d2, f6 and h6; Black Kc8, pawns b3, c7, d3, f7 and h7. (After Noam D. Elkies, see link; diagram 5).
Counts all paths of length n, n>=0, starting at the initial node on the path graph P_6, see the second Maple program. (End)
a(n) is the number of length n-1 binary words such that each maximal block of 1's has odd length. a(4) = 6 because we have: 000, 001, 010, 100, 101, 111. - Geoffrey Critzer, Nov 17 2012
a(n) is the number of compositions of n where increments can only appear at every second position, starting with the second and third part, see example. Also, a(n) is the number of compositions of n where there is no fall between every second pair of parts, starting with the first and second part; see example. - Joerg Arndt, May 21 2013
a(n) is the top left entry of the n-th power of the 3 X 3 matrix [1, 1, 0; 1, 0, 1; 0, 1, 0] or of the 3 X 3 matrix [1, 0, 1; 0, 0, 1; 1, 1, 0]. - R. J. Mathar, Feb 03 2014
Range of row n of the circular Pascal array of order 7. - Shaun V. Ault, Jun 05 2014
a(n) is the number of compositions of n into parts from {1,2,4,6,8,10,...}. Example: a(4)= 6 because we have 4, 22, 211, 121, 112, and 1111. - Emeric Deutsch, Aug 17 2016
In general, a(n,m) = (2^n/(m+1))*Sum_{r=1..m} (1-(-1)^r)*cos(Pi*r/(m+1))^n*(1+cos(Pi*r/(m+1))) gives the number of paths of length n starting at the initial node on the path graph P_m. Here we have m=6. - Herbert Kociemba, Sep 15 2020
a(n-1) is the number of triangular dcc-polyominoes having area n (see Baril et al. at page 11). - Stefano Spezia, Oct 14 2023
a(n) is the number of permutations p of [n] with p(j)Alois P. Heinz, Mar 29 2024

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 19*x^6 + 33*x^7 + 61*x^8 + ...
From _Joerg Arndt_, May 21 2013: (Start)
There are a(6)=19 compositions of 6 where increments can only appear at every second position:
  01:  [ 1 1 1 1 1 1 ]
  02:  [ 1 1 1 1 2 ]
  03:  [ 1 1 2 1 1 ]
  04:  [ 1 1 2 2 ]
  05:  [ 1 1 3 1 ]
  06:  [ 1 1 4 ]
  07:  [ 2 1 1 1 1 ]
  08:  [ 2 1 2 1 ]
  09:  [ 2 1 3 ]
  10:  [ 2 2 1 1 ]
  11:  [ 2 2 2 ]
  12:  [ 3 1 1 1 ]
  13:  [ 3 1 2 ]
  14:  [ 3 2 1 ]
  15:  [ 3 3 ]
  16:  [ 4 1 1 ]
  17:  [ 4 2 ]
  18:  [ 5 1 ]
  19:  [ 6 ]
There are a(6)=19 compositions of 6 where there is no fall between every second pair of parts, starting with the first and second part:
  01:  [ 1 1 1 1 1 1 ]
  02:  [ 1 1 1 1 2 ]
  03:  [ 1 1 1 2 1 ]
  04:  [ 1 1 1 3 ]
  05:  [ 1 1 2 2 ]
  06:  [ 1 1 4 ]
  07:  [ 1 2 1 1 1 ]
  08:  [ 1 2 1 2 ]
  09:  [ 1 2 3 ]
  10:  [ 1 3 1 1 ]
  11:  [ 1 3 2 ]
  12:  [ 1 4 1 ]
  13:  [ 1 5 ]
  14:  [ 2 2 1 1 ]
  15:  [ 2 2 2 ]
  16:  [ 2 3 1 ]
  17:  [ 2 4 ]
  18:  [ 3 3 ]
  19:  [ 6 ]
(End)
19 = (1, 0, 1, 0, 1, 1) dot (1, 1, 2, 3, 6, 10) = (1 + 0 + 2 + 0 + 6 + 10). Cf. comment of Apr 28 2009. - _Gary W. Adamson_, Aug 10 2016
		

Crossrefs

Programs

  • Maple
    spec := [S,{S=Sequence(Union(Prod(Sequence(Prod(Z,Z)),Z,Z),Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
    with(GraphTheory): P:=6: G:= PathGraph(P): A:=AdjacencyMatrix(G): nmax:=34; for n from 0 to nmax do B(n):=A^n; a(n):=add(B(n)[1,k], k=1..P) od: seq(a(n), n=0..nmax); # Johannes W. Meijer, May 29 2010
    a := (-1)^(3/7) - (-1)^(4/7):
    b := (-1)^(5/7) - (-1)^(2/7):
    c := (-1)^(1/7) - (-1)^(6/7):
    f := n -> (a^n * (2 + a) + b^n * (2 + b) + c^n * (2 + c))/7:
    seq(simplify(f(n)), n=0..36); # Peter Luschny, Sep 16 2020
  • Mathematica
    LinearRecurrence[{1, 2, -1}, {1, 1, 2}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 11 2012 *)
    CoefficientList[Series[(1-x^2)/(1-x-2x^2+x^3),{x,0,40}],x] (* Harvey P. Dale, Dec 23 2018 *)
    a[n_,m_]:= 2^(n+1)/(m+1) Module[{x=(Pi r)/(m+1)},Sum[Cos[x]^n (1+Cos[x]),{r,1,m,2}]]
    Table[a[n,6],{n,0,40}]//Round (* Herbert Kociemba, Sep 15 2020 *) (* Herbert Kociemba, Sep 14 2020 *)
  • PARI
    {a(n) = if( n<0, n = -1-n; polcoeff( (1 - x^2) / (1 - 2*x - x^2 + x^3) + x * O(x^n), n), polcoeff( (1 - x^2) / (1 - x - 2*x^2 + x^3) + x * O(x^n), n))} /* Michael Somos, Apr 05 2012 */
    
  • PARI
    a(n)=([0,1,0;0,0,1;-1,2,1]^n*[1;1;2])[1,1] \\ Charles R Greathouse IV, Aug 25 2016

Formula

Recurrence: {a(0)=1, a(1)=1, a(2)=2, a(n)-2*a(n+1)-a(n+2)+a(n+3)=0}.
a(n) = Sum_(1/7*(1+2*_alpha)*_alpha^(-1-n), _alpha=RootOf(_Z^3-2*_Z^2-_Z+1)).
a(n) = A094718(6, n). - N. J. A. Sloane, Jun 12 2004
a(n) = a(n-1) + Sum_{k=1..floor(n/2)} a(n-2*k). - Floor van Lamoen, Oct 29 2005
a(n) = 5*a(n-2) - 6*a(n-4) + a(n-6). - Floor van Lamoen, Nov 02 2005
a(n) = A006053(n+2) - A006053(n). - R. J. Mathar, Nov 16 2007
a(2*n) = A052975(n), a(2*n+1) = A060557(n). - Johannes W. Meijer, May 29 2010
G.f.: 1 / (1 - x / (1 - x / (1 + x / (1 + x / (1 - x))))). - Michael Somos, Apr 05 2012
a(-1 - n) = A052534(n). - Michael Somos, Apr 05 2012
a(n) = (2^n/7)*Sum_{r=1..6} (1-(-1)^r)*cos(Pi*r/7)^n*(1+cos(Pi*r/7)). - Herbert Kociemba, Sep 15 2020

Extensions

More terms from James Sellers, Jun 05 2000

A238628 Number of partitions p of n such that n - max(p) is a part of p.

Original entry on oeis.org

0, 1, 1, 3, 2, 5, 3, 8, 4, 11, 5, 16, 6, 21, 7, 29, 8, 38, 9, 51, 10, 66, 11, 88, 12, 113, 13, 148, 14, 190, 15, 246, 16, 313, 17, 402, 18, 508, 19, 646, 20, 812, 21, 1023, 22, 1277, 23, 1598, 24, 1982, 25, 2461, 26, 3036, 27, 3745, 28, 4593, 29, 5633
Offset: 1

Views

Author

Clark Kimberling, Mar 02 2014

Keywords

Comments

Also the number of integer partitions of n that are of length 2 or contain n/2. The first condition alone is A004526, complement A058984. The second condition alone is A035363, complement A086543, ranks A344415. - Gus Wiseman, Oct 07 2023

Examples

			a(6) counts these partitions:  51, 42, 33, 321, 3111.
		

Crossrefs

Cf. A238479.
The strict case is A365659, complement A365826.
The complement is counted by A365825.
These partitions are ranked by A366318.
A000041 counts integer partitions, strict A000009.
A140106 counts strict partitions of length 2, complement A365827.
A182616 counts partitions of 2n that do not contain n, strict A365828.

Programs

  • Mathematica
    Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, n - Max[p]]], {n, 50}]
  • PARI
    a(n) = my(res = floor(n/2)); if(!bitand(n, 1), res+=(numbpart(n/2)-1)); res
  • Python
    from sympy.utilities.iterables import partitions
    def A238628(n): return sum(1 for p in partitions(n) if n-max(p,default=0) in p) # Chai Wah Wu, Sep 21 2023
    

A365541 Irregular triangle read by rows where T(n,k) is the number of subsets of {1..n} containing two distinct elements summing to k = 3..2n-1.

Original entry on oeis.org

1, 2, 2, 2, 4, 4, 7, 4, 4, 8, 8, 14, 14, 14, 8, 8, 16, 16, 28, 28, 37, 28, 28, 16, 16, 32, 32, 56, 56, 74, 74, 74, 56, 56, 32, 32, 64, 64, 112, 112, 148, 148, 175, 148, 148, 112, 112, 64, 64, 128, 128, 224, 224, 296, 296, 350, 350, 350, 296, 296, 224, 224, 128, 128
Offset: 2

Views

Author

Gus Wiseman, Sep 15 2023

Keywords

Comments

Rows are palindromic.

Examples

			Triangle begins:
    1
    2    2    2
    4    4    7    4    4
    8    8   14   14   14    8    8
   16   16   28   28   37   28   28   16   16
   32   32   56   56   74   74   74   56   56   32   32
Row n = 4 counts the following subsets:
  {1,2}      {1,3}      {1,4}      {2,4}      {3,4}
  {1,2,3}    {1,2,3}    {2,3}      {1,2,4}    {1,3,4}
  {1,2,4}    {1,3,4}    {1,2,3}    {2,3,4}    {2,3,4}
  {1,2,3,4}  {1,2,3,4}  {1,2,4}    {1,2,3,4}  {1,2,3,4}
                        {1,3,4}
                        {2,3,4}
                        {1,2,3,4}
		

Crossrefs

Row lengths are A005408.
The case counting only length-2 subsets is A008967.
Column k = n + 1 appears to be A167762.
The version for all subsets (instead of just pairs) is A365381.
Column k = n is A365544.
A000009 counts subsets summing to n.
A007865/A085489/A151897 count certain types of sum-free subsets.
A046663 counts partitions with no submultiset summing to k, strict A365663.
A093971/A088809/A364534 count certain types of sum-full subsets.
A365543 counts partitions with a submultiset summing to k, strict A365661.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], MemberQ[Total/@Subsets[#,{2}],k]&]], {n,2,11}, {k,3,2n-1}]

A124302 Number of set partitions with at most 3 blocks; number of Dyck paths of height at most 4; dimension of space of symmetric polynomials in 3 noncommuting variables.

Original entry on oeis.org

1, 1, 2, 5, 14, 41, 122, 365, 1094, 3281, 9842, 29525, 88574, 265721, 797162, 2391485, 7174454, 21523361, 64570082, 193710245, 581130734, 1743392201, 5230176602, 15690529805, 47071589414, 141214768241, 423644304722, 1270932914165, 3812798742494, 11438396227481
Offset: 0

Views

Author

Mike Zabrocki, Oct 25 2006

Keywords

Comments

Row sums of triangle in A056241. - Philippe Deléham, Oct 30 2006
Row sums of triangle in A147746. - Philippe Deléham, Dec 04 2008
Hankel transform is := [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...]. - Philippe Deléham, Dec 04 2008
Number of nonisomorphic graded posets with 0 and 1 and uniform Hasse graph of rank n with no 3-element antichain. (Uniform used in the sense of Retakh, Serconek and Wilson. Graded used in Stanley's sense that every maximal chain has the same length n.) - David Nacin, Feb 26 2012
Number of Dyck paths of length 2n and height at most 4. - Ira M. Gessel, Aug 06 2012

Examples

			There are 15 set partitions of {1,2,3,4}, only {{1},{2},{3},{4}} has more than 3 blocks, so a(4) = 14.
G.f. = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 41*x^5 + 122*x^6 + 365*x^7 + ...
		

References

  • R. Stanley, Enumerative combinatorics, Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.

Crossrefs

Essentially the same as A007051.

Programs

  • Magma
    I:=[1, 1, 2]; [n le 3 select I[n] else  4*Self(n-1) - 3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 25 2012
    
  • Maple
    a:= proc(n); if n<3 then [1,1,2][n+1]; else 4*a(n-1)-3*a(n-2); fi; end:
    # Mike Zabrocki, Oct 25 2006
    with(GraphTheory): G:=PathGraph(5): A:= AdjacencyMatrix(G): nmax:=27; for n from 0 to 2*nmax do B(n):=A^n; b(n):=B(n)[1,1]; od: for n from 0 to nmax do a(n):=b(2*n) od: seq(a(n),n=0..nmax);
    # Johannes W. Meijer, May 29 2010
  • Mathematica
    a=Exp[x]-1; Range[0, 20]! CoefficientList[Series[1+a+a^2/2+a^3/6, {x,0,20}],x]
    Join[{1}, LinearRecurrence[{4, -3}, {1, 2}, 20]] (* David Nacin, Feb 26 2012 *)
    CoefficientList[Series[1 / (1 - x / (1 - x / (1 - x / (1 - x)))), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 25 2012 *)
    Table[Sum[StirlingS2[n,k],{k,0,3}],{n,0,30}] (* Robert A. Russell, Mar 29 2018 *)
  • PARI
    {a(n) = if( n<1, n==0, (3^(n-1) + 1) / 2)}; /* Michael Somos, Apr 03 2014 */
  • Python
    def a(n, adict={0:1, 1:1, 2:2}):
        if n in adict:
            return adict[n]
        adict[n]=4*a(n-1) - 3*a(n-2)
        return adict[n] # David Nacin, Mar 04 2012
    

Formula

O.g.f.: (q^2 - 3*q + 1)/(3*q^2 - 4*q + 1) = Sum_{k=0..3} (q^k/Product_{i=1..k} (1-i*q)).
a(n) = 4*a(n-1) - 3*a(n-2); a(0) = 1, a(1) = 1, a(2) = 2, a(n) = Sum_{k=1..3} A008277(n,k).
Inverse binomial transform of A007581. - Philippe Deléham, Oct 30 2006
a(n) = Sum_{k=0..n} A056241(n,k), n >= 1. - Philippe Deléham, Oct 30 2006
a(0) = 1, a(n) = (3^(n-1) + 1)/2 for n >= 1, see A007051. - Philippe Deléham, Oct 30 2006
E.g.f.: (2 + 3*exp(x) + exp(3x))/6.
G.f.: 1 / (1 - x / (1 - x / (1 - x / (1 - x)))). - Michael Somos, May 03 2012
G.f.: 1 + x + 3*x^2*U(0)/2 where U(k) = 1 + 2/(3*3^k + 3*3^k/(1 - 18*x*3^k/ (9*x*3^k - 1/U(k+1)))); (continued fraction, 4-step). - Sergei N. Gladkovskii, Nov 01 2012
G.f.: 1+x*G(0) where G(k) = 1 + 2*x/( 1-2*x - x*(1-2*x)/(x + (1-2*x)*2/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 10 2012
a(n) = Sum_{k=0..3} Stirling2(n,k). - Robert A. Russell, Mar 29 2018
G.f.: Sum_{j=0..k} A248925(k,j)*x^j / Product_{j=1..k} 1-j*x with k=3. - Robert A. Russell, Apr 25 2018

A367216 Number of subsets of {1..n} whose cardinality is equal to the sum of some subset.

Original entry on oeis.org

1, 2, 3, 5, 10, 20, 40, 82, 169, 348, 716, 1471, 3016, 6171, 12605, 25710, 52370, 106539, 216470, 439310, 890550, 1803415, 3648557, 7375141, 14896184, 30065129, 60639954, 122231740, 246239551, 495790161, 997747182, 2006969629, 4035274292, 8110185100, 16293958314, 32724456982
Offset: 0

Views

Author

Gus Wiseman, Nov 12 2023

Keywords

Examples

			The a(0) = 1 through a(4) = 10 subsets:
  {}  {}   {}     {}       {}
      {1}  {1}    {1}      {1}
           {1,2}  {1,2}    {1,2}
                  {2,3}    {2,3}
                  {1,2,3}  {2,4}
                           {1,2,3}
                           {1,2,4}
                           {1,3,4}
                           {2,3,4}
                           {1,2,3,4}
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000009 counts subsets summing to n.
A000124 counts distinct possible sums of subsets of {1..n}.
A002865 counts partitions whose length is a part, complement A229816.
A007865/A085489/A151897 count certain types of sum-free subsets.
A088809/A093971/A364534 count certain types of sum-full subsets.
A237668 counts sum-full partitions, ranks A364532.
A240855 counts strict partitions whose length is a part, complement A240861.
A364272 counts sum-full strict partitions, sum-free A364349.
A365046 counts combination-full subsets, differences of A364914.
Triangles:
A365381 counts sets with a subset summing to k, without A366320.
A365541 counts sets containing two distinct elements summing to k.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], MemberQ[Total/@Subsets[#], Length[#]]&]], {n,0,10}]

Formula

a(n) = 2^n - A367217(n). - Chai Wah Wu, Nov 14 2023

Extensions

a(16)-a(28) from Chai Wah Wu, Nov 14 2023
a(29)-a(35) from Max Alekseyev, Feb 25 2025

A367217 Number of subsets of {1..n} whose cardinality is not equal to the sum of any subset.

Original entry on oeis.org

0, 0, 1, 3, 6, 12, 24, 46, 87, 164, 308, 577, 1080, 2021, 3779, 7058, 13166, 24533, 45674, 84978, 158026, 293737, 545747, 1013467, 1881032, 3489303, 6468910, 11985988, 22195905, 41080751, 75994642, 140514019, 259693004, 479749492, 885910870, 1635281386
Offset: 0

Views

Author

Gus Wiseman, Nov 12 2023

Keywords

Examples

			The a(2) = 1 through a(5) = 12 subsets:
  {2}  {2}    {2}    {2}
       {3}    {3}    {3}
       {1,3}  {4}    {4}
              {1,3}  {5}
              {1,4}  {1,3}
              {3,4}  {1,4}
                     {1,5}
                     {3,4}
                     {3,5}
                     {4,5}
                     {1,4,5}
                     {2,4,5}
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000009 counts subsets summing to n.
A000124 counts distinct possible sums of subsets of {1..n}.
A229816 counts partitions whose length is not a part, complement A002865.
A007865/A085489/A151897 count certain types of sum-free subsets.
A088809/A093971/A364534 count certain types of sum-full subsets.
A124506 appears to count combination-free subsets, differences of A326083.
A237667 counts sum-free partitions, ranks A364531.
Triangles:
A046663 counts partitions of n without a subset-sum k, strict A365663.
A365381 counts sets with a subset summing to k, without A366320.
A365541 counts sets containing two distinct elements summing to k.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], FreeQ[Total/@Subsets[#], Length[#]]&]], {n,0,15}]

Formula

a(n) = 2^n - A367216(n). - Chai Wah Wu, Nov 14 2023

Extensions

a(16)-a(28) from Chai Wah Wu, Nov 14 2023
a(29)-a(35) from Max Alekseyev, Feb 25 2025

A367219 Number of integer partitions of n whose length cannot be written as a nonnegative linear combination of the distinct parts.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 3, 2, 4, 4, 7, 6, 11, 9, 16, 16, 23, 22, 35, 33, 48, 50, 69, 70, 99, 99, 136, 142, 187, 194, 261, 267, 346, 367, 468, 489, 626, 650, 824, 870, 1081, 1135, 1421, 1485, 1833, 1942, 2374, 2501, 3062, 3220, 3915, 4145, 4987, 5274, 6363, 6709, 8027
Offset: 0

Views

Author

Gus Wiseman, Nov 14 2023

Keywords

Examples

			3 cannot be written as a nonnegative linear combination of 2 and 5, so (5,2,2) is counted under a(9).
The a(2) = 1 through a(10) = 7 partitions:
  (2)  (3)  (4)  (5)  (6)      (7)    (8)      (9)      (10)
                      (3,3)    (4,3)  (4,4)    (5,4)    (5,5)
                      (2,2,2)         (5,3)    (6,3)    (6,4)
                                      (4,2,2)  (5,2,2)  (7,3)
                                                        (4,4,2)
                                                        (6,2,2)
                                                        (2,2,2,2,2)
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000041 counts integer partitions, strict A000009.
A002865 counts partitions whose length is a part, complement A229816.
A008284 counts partitions by length, strict A008289.
A124506 appears to count combination-free subsets, differences of A326083.
A365046 counts combination-full subsets, differences of A364914.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[IntegerPartitions[n],combs[Length[#],Union[#]]=={}&]],{n,0,15}]

Extensions

a(31)-a(56) from Chai Wah Wu, Nov 15 2023
Showing 1-10 of 34 results. Next