cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 61 results. Next

A365543 Triangle read by rows where T(n,k) is the number of integer partitions of n with a submultiset summing to k.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 2, 2, 3, 5, 3, 3, 3, 5, 7, 5, 5, 5, 5, 7, 11, 7, 8, 6, 8, 7, 11, 15, 11, 11, 11, 11, 11, 11, 15, 22, 15, 17, 15, 14, 15, 17, 15, 22, 30, 22, 23, 23, 22, 22, 23, 23, 22, 30, 42, 30, 33, 30, 33, 25, 33, 30, 33, 30, 42
Offset: 0

Views

Author

Gus Wiseman, Sep 16 2023

Keywords

Comments

Rows are palindromic.

Examples

			Triangle begins:
   1
   1   1
   2   1   2
   3   2   2   3
   5   3   3   3   5
   7   5   5   5   5   7
  11   7   8   6   8   7  11
  15  11  11  11  11  11  11  15
  22  15  17  15  14  15  17  15  22
  30  22  23  23  22  22  23  23  22  30
  42  30  33  30  33  25  33  30  33  30  42
  56  42  45  44  44  43  43  44  44  45  42  56
  77  56  62  58  62  56  53  56  62  58  62  56  77
Row n = 6 counts the following partitions:
  (6)       (51)      (42)      (33)      (42)      (51)      (6)
  (51)      (411)     (411)     (321)     (411)     (411)     (51)
  (42)      (321)     (321)     (3111)    (321)     (321)     (42)
  (411)     (3111)    (3111)    (2211)    (3111)    (3111)    (411)
  (33)      (2211)    (222)     (21111)   (222)     (2211)    (33)
  (321)     (21111)   (2211)    (111111)  (2211)    (21111)   (321)
  (3111)    (111111)  (21111)             (21111)   (111111)  (3111)
  (222)               (111111)            (111111)            (222)
  (2211)                                                      (2211)
  (21111)                                                     (21111)
  (111111)                                                    (111111)
		

Crossrefs

Columns k = 0 and k = n are A000041.
Central column n = 2k is A002219.
The complement is counted by A046663, strict A365663.
Row sums are A304792.
For subsets instead of partitions we have A365381.
The strict case is A365661.
A000009 counts subsets summing to n.
A000124 counts distinct possible sums of subsets of {1..n}.
A364272 counts sum-full strict partitions, sum-free A364349.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],MemberQ[Total/@Subsets[#],k]&]],{n,0,15},{k,0,n}]

A046663 Triangle: T(n,k) = number of partitions of n (>=2) with no subsum equal to k (1 <= k <= n-1).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 4, 3, 5, 3, 4, 4, 4, 4, 4, 4, 4, 7, 5, 7, 8, 7, 5, 7, 8, 7, 7, 8, 8, 7, 7, 8, 12, 9, 12, 9, 17, 9, 12, 9, 12, 14, 11, 12, 12, 13, 13, 12, 12, 11, 14, 21, 15, 19, 15, 21, 24, 21, 15, 19, 15, 21, 24, 19, 20, 19, 21, 22, 22, 21, 19, 20, 19, 24, 34, 23, 30, 24, 30, 25, 46, 25, 30, 24, 30, 23, 34
Offset: 2

Views

Author

Keywords

Examples

			For n = 4 there are two partitions (4, 2+2) with no subsum equal to 1, two (4, 3+1) with no subsum equal to 2 and two (4, 2+2) with no subsum equal to 3.
Triangle T(n,k) begins:
   1;
   1,  1;
   2,  2,  2;
   2,  2,  2,  2;
   4,  3,  5,  3,  4;
   4,  4,  4,  4,  4,  4;
   7,  5,  7,  8,  7,  5,  7;
   8,  7,  7,  8,  8,  7,  7,  8;
  12,  9, 12,  9, 17,  9, 12,  9, 12;
  ...
From _Gus Wiseman_, Oct 11 2023: (Start)
Row n = 8 counts the following partitions:
  (8)     (8)    (8)     (8)     (8)     (8)    (8)
  (62)    (71)   (71)    (71)    (71)    (71)   (62)
  (53)    (53)   (62)    (62)    (62)    (53)   (53)
  (44)    (44)   (611)   (611)   (611)   (44)   (44)
  (422)   (431)  (44)    (53)    (44)    (431)  (422)
  (332)          (422)   (521)   (422)          (332)
  (2222)         (2222)  (5111)  (2222)         (2222)
                         (332)
(End)
		

Crossrefs

Column k = 0 and diagonal k = n are both A002865.
Central diagonal n = 2k is A006827.
The complement with expanded domain is A365543.
The strict case is A365663, complement A365661.
Row sums are A365918, complement A304792.
For subsets instead of partitions we have A366320, complement A365381.
A000041 counts integer partitions, strict A000009.
A276024 counts distinct subset-sums of partitions.
A364272 counts sum-full strict partitions, sum-free A364349.

Programs

  • Maple
    g:= proc(n, i) option remember;
         `if`(n=0, 1, `if`(i>1, g(n, i-1), 0)+`if`(i>n, 0, g(n-i, i)))
        end:
    b:= proc(n, i, s) option remember;
         `if`(0 in s or n in s, 0, `if`(n=0 or s={}, g(n, i),
         `if`(i<1, 0, b(n, i-1, s)+`if`(i>n, 0, b(n-i, i,
          select(y-> 0<=y and y<=n-i, map(x-> [x, x-i][], s)))))))
        end:
    T:= (n, k)-> b(n, n, {min(k, n-k)}):
    seq(seq(T(n, k), k=1..n-1), n=2..16);  # Alois P. Heinz, Jul 13 2012
  • Mathematica
    g[n_, i_] := g[n, i] = If[n == 0, 1, If[i > 1, g[n, i-1], 0] + If[i > n, 0, g[n-i, i]]]; b[n_, i_, s_] := b[n, i, s] = If[MemberQ[s, 0 | n], 0, If[n == 0 || s == {}, g[n, i], If[i < 1, 0, b[n, i-1, s] + If[i > n, 0, b[n-i, i, Select[Flatten[s /. x_ :> {x, x-i}], 0 <= # <= n-i &]]]]]]; t[n_, k_] := b[n, n, {Min[k, n-k]}]; Table[t[n, k], {n, 2, 16}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Aug 20 2013, translated from Maple *)
    Table[Length[Select[IntegerPartitions[n],FreeQ[Total/@Subsets[#],k]&]],{n,2,10},{k,1,n-1}] (* Gus Wiseman, Oct 11 2023 *)

Extensions

Corrected and extended by Don Reble, Nov 04 2001

A006827 Number of partitions of 2n with all subsums different from n.

Original entry on oeis.org

1, 2, 5, 8, 17, 24, 46, 64, 107, 147, 242, 302, 488, 629, 922, 1172, 1745, 2108, 3104, 3737, 5232, 6419, 8988, 10390, 14552, 17292, 23160, 27206, 36975, 41945, 57058, 65291, 85895, 99384, 130443, 145283, 193554, 218947, 281860, 316326, 413322, 454229, 594048
Offset: 1

Views

Author

Keywords

Comments

Partitions of this type are also called non-biquanimous partitions. - Gus Wiseman, Apr 19 2024

Examples

			From _Gus Wiseman_, Apr 19 2024: (Start)
The a(1) = 1 through a(5) = 17 partitions (A = 10):
  (2)  (4)   (6)    (8)     (A)
       (31)  (42)   (53)    (64)
             (51)   (62)    (73)
             (222)  (71)    (82)
             (411)  (332)   (91)
                    (521)   (433)
                    (611)   (442)
                    (5111)  (622)
                            (631)
                            (721)
                            (811)
                            (3331)
                            (4222)
                            (6211)
                            (7111)
                            (22222)
                            (61111)
(End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The complement is counted by A002219, ranks A357976.
Central diagonal of A046663.
The strict case is A321142, even bisection of A371794 (odd A078408).
This is the "bi-" version of A321451, ranks A321453.
Column k = 0 of A367094.
These partitions have Heinz numbers A371731.
Even bisection of A371795 (odd A058695).
A371783 counts k-quanimous partitions.

Programs

  • Maple
    b:= proc(n, i, s) option remember;
          `if`(0 in s or n in s, 0, `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, s)+
          `if`(i<=n, b(n-i, i, select(y-> 0<=y and y<=n-i,
                     map(x-> [x, x-i][], s))), 0))))
        end:
    a:= n-> b(2*n, 2*n, {n}):
    seq(a(n), n=1..25);  # Alois P. Heinz, Jul 10 2012
  • Mathematica
    b[n_, i_, s_] := b[n, i, s] = If[MemberQ[s, 0 | n], 0, If[n == 0, 1, If[i < 1, 0, b[n, i-1, s] + If[i <= n, b[n-i, i, Select[Flatten[Transpose[{s, s-i}]], 0 <= # <= n-i &]], 0]]]]; a[n_] := b[2*n, 2*n, {n}]; Table[Print[an = a[n]]; an, {n, 1, 25}] (* Jean-François Alcover, Nov 12 2013, after Alois P. Heinz *)
  • Python
    from itertools import combinations_with_replacement
    from collections import Counter
    from sympy import npartitions
    from sympy.utilities.iterables import partitions
    def A006827(n): return npartitions(n<<1)-len({tuple(sorted((p+q).items())) for p, q in combinations_with_replacement(tuple(Counter(p) for p in partitions(n)),2)}) # Chai Wah Wu, Sep 20 2023

Formula

a(n) = A000041(2*n) - A002219(n).
a(n) = A046663(2*n,n).

Extensions

More terms from Don Reble, Nov 03 2001
More terms from Alois P. Heinz, Jul 10 2012

A365661 Triangle read by rows where T(n,k) is the number of strict integer partitions of n with a submultiset summing to k.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 2, 1, 1, 2, 2, 1, 0, 1, 2, 3, 1, 1, 1, 1, 3, 4, 2, 2, 1, 2, 2, 4, 5, 2, 2, 2, 2, 2, 2, 5, 6, 3, 2, 3, 1, 3, 2, 3, 6, 8, 3, 3, 4, 3, 3, 4, 3, 3, 8, 10, 5, 4, 5, 4, 3, 4, 5, 4, 5, 10, 12, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 12
Offset: 0

Views

Author

Gus Wiseman, Sep 16 2023

Keywords

Comments

First differs from A284593 at T(6,3) = 1, A284593(6,3) = 2.
Rows are palindromic.
Are there only two zeros in the whole triangle?

Examples

			Triangle begins:
  1
  1  1
  1  0  1
  2  1  1  2
  2  1  0  1  2
  3  1  1  1  1  3
  4  2  2  1  2  2  4
  5  2  2  2  2  2  2  5
  6  3  2  3  1  3  2  3  6
  8  3  3  4  3  3  4  3  3  8
Row n = 6 counts the following strict partitions:
  (6)      (5,1)    (4,2)    (3,2,1)  (4,2)    (5,1)    (6)
  (5,1)    (3,2,1)  (3,2,1)           (3,2,1)  (3,2,1)  (5,1)
  (4,2)                                                 (4,2)
  (3,2,1)                                               (3,2,1)
Row n = 10 counts the following strict partitions:
  A     91    82    73    64    532   64    73    82    91    A
  64    541   532   532   541   541   541   532   532   541   64
  73    631   721   631   631   4321  631   631   721   631   73
  82    721   4321  721   4321        4321  721   4321  721   82
  91    4321        4321                    4321        4321  91
  532                                                         532
  541                                                         541
  631                                                         631
  721                                                         721
  4321                                                        4321
		

Crossrefs

Columns k = 0 and k = n are A000009.
The non-strict complement is A046663, central column A006827.
Central column n = 2k is A237258.
For subsets instead of partitions we have A365381.
The non-strict case is A365543.
The complement is A365663.
A000124 counts distinct possible sums of subsets of {1..n}.
A364272 counts sum-full strict partitions, sum-free A364349.

Programs

  • Mathematica
    Table[Length[Select[Select[IntegerPartitions[n], UnsameQ@@#&], MemberQ[Total/@Subsets[#],k]&]], {n,0,10},{k,0,n}]

A365663 Triangle read by rows where T(n,k) is the number of strict integer partitions of n without a subset summing to k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 3, 5, 3, 4, 3, 5, 5, 4, 5, 5, 4, 5, 5, 5, 6, 5, 6, 7, 6, 5, 6, 5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 8, 8, 8, 11, 8, 8, 8, 9, 8, 10, 11, 10, 10, 10, 10, 10, 10, 10, 10, 11, 10, 12, 13, 11, 13, 11, 12, 15, 12, 11, 13, 11, 13, 12
Offset: 2

Views

Author

Gus Wiseman, Sep 17 2023

Keywords

Comments

Warning: Do not confuse with the non-strict version A046663.
Rows are palindromes.

Examples

			Triangle begins:
  1
  1  1
  1  2  1
  2  2  2  2
  2  2  3  2  2
  3  3  3  3  3  3
  3  4  3  5  3  4  3
  5  5  4  5  5  4  5  5
  5  6  5  6  7  6  5  6  5
  7  7  7  7  7  7  7  7  7  7
  8  9  8  8  8 11  8  8  8  9  8
Row n = 8 counts the following strict partitions:
  (8)    (8)      (8)    (8)      (8)    (8)      (8)
  (6,2)  (7,1)    (7,1)  (7,1)    (7,1)  (7,1)    (6,2)
  (5,3)  (5,3)    (6,2)  (6,2)    (6,2)  (5,3)    (5,3)
         (4,3,1)         (5,3)           (4,3,1)
                         (5,2,1)
		

Crossrefs

Columns k = 0 and k = n are A025147.
The non-strict version is A046663, central column A006827.
Central column n = 2k is A321142.
The complement for subsets instead of strict partitions is A365381.
The complement is A365661, non-strict A365543, central column A237258.
Row sums are A365922.
A000009 counts subsets summing to n.
A000124 counts distinct possible sums of subsets of {1..n}.
A124506 appears to count combination-free subsets, differences of A326083.
A364272 counts sum-full strict partitions, sum-free A364349.
A364350 counts combination-free strict partitions, complement A364839.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&FreeQ[Total/@Subsets[#],k]&]], {n,2,15},{k,1,n-1}]

A237258 Number of strict partitions of 2n that include a partition of n.

Original entry on oeis.org

1, 0, 0, 1, 1, 3, 4, 7, 9, 16, 21, 32, 43, 63, 84, 122, 158, 220, 293, 393, 511, 685, 881, 1156, 1485, 1925, 2445, 3147, 3952, 5019, 6323, 7924, 9862, 12336, 15259, 18900, 23294, 28646, 35091, 42985, 52341, 63694, 77336, 93588, 112973, 136367, 163874, 196638
Offset: 0

Views

Author

Clark Kimberling, Feb 05 2014

Keywords

Comments

A strict partition is a partition into distinct parts.

Examples

			a(5) counts these partitions of 10: [5,4,1], [5,3,2], [4,3,2,1].
		

Crossrefs

The non-strict version is A002219, ranked by A357976.
These partitions are ranked by A357854.
A000712 counts distinct submultisets of partitions, strict A032302.
A304792 counts subset-sums of partitions, positive A276024, strict A284640.

Programs

  • Mathematica
    z = 24; Table[theTotals = Map[{#, Map[Total, Subsets[#]]} &,  Select[IntegerPartitions[2 nn], # == DeleteDuplicates[#] &]]; Length[Map[#[[1]] &, Select[theTotals, Length[Position[#[[2]], nn]] >= 1 &]]], {nn, z}] (* Peter J. C. Moses, Feb 04 2014 *)

Formula

a(n) = A237194(2n,n).

Extensions

a(31)-a(47) from Alois P. Heinz, Feb 07 2014

A357976 Numbers with a divisor having the same sum of prime indices as their quotient.

Original entry on oeis.org

1, 4, 9, 12, 16, 25, 30, 36, 40, 48, 49, 63, 64, 70, 81, 84, 90, 100, 108, 112, 120, 121, 144, 154, 160, 165, 169, 192, 196, 198, 210, 220, 225, 252, 256, 264, 270, 273, 280, 286, 289, 300, 324, 325, 336, 351, 352, 360, 361, 364, 390, 400, 432, 441, 442, 448
Offset: 1

Views

Author

Gus Wiseman, Oct 26 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
   1: {}
   4: {1,1}
   9: {2,2}
  12: {1,1,2}
  16: {1,1,1,1}
  25: {3,3}
  30: {1,2,3}
  36: {1,1,2,2}
  40: {1,1,1,3}
  48: {1,1,1,1,2}
  49: {4,4}
For example, 40 has factorization 8*5, and both factors have the same sum of prime indices 3, so 40 is in the sequence.
		

Crossrefs

The partitions with these Heinz numbers are counted by A002219.
A subset of A300061.
The squarefree case is A357854, counted by A237258.
Positions of nonzero terms in A357879.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Maple
    filter:= proc(n) local F,s,t,i,R;
      F:= ifactors(n)[2];
      F:= map(t -> [numtheory:-pi(t[1]),t[2]], F);
      s:= add(t[1]*t[2],t=F)/2;
      if not s::integer then return false fi;
      try
      R:= Optimization:-Maximize(0, [add(F[i][1]*x[i],i=1..nops(F)) = s, seq(x[i]<= F[i][2],i=1..nops(F))], assume=nonnegint, depthlimit=20);
      catch "no feasible integer point found; use feasibilitytolerance option to adjust tolerance": return false;
      end try;
      true
    end proc:
    filter(1):= true:
    select(filter, [$1..1000]); # Robert Israel, Oct 26 2023
  • Mathematica
    sumprix[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>k*PrimePi[p]]];
    Select[Range[100],MemberQ[sumprix/@Divisors[#],sumprix[#]/2]&]

A064914 Number of ordered biquanimous partitions of 2n.

Original entry on oeis.org

1, 1, 5, 23, 105, 449, 1902, 7828, 31976, 129200, 520425, 2088217, 8371186, 33514797, 134140430, 536699674, 2147154667, 8589198795, 34358341823, 137435830265, 549749857574, 2199010044813, 8796067657649, 35184315676573, 140737380485376, 562949713881526
Offset: 0

Views

Author

Christian G. Bower, Oct 12 2001

Keywords

Comments

A biquanimous partition is one that can be bisected into two equal sized parts: e.g. 3+2+1 is a biquanimous partition of 6 as it contains 3 and 2+1, but 5+1 is not.

Examples

			From _Gus Wiseman_, Apr 19 2024: (Start)
The a(0) = 1 through a(3) = 23 biquanimous compositions:
  ()  (11)  (22)    (33)
            (112)   (123)
            (121)   (132)
            (211)   (213)
            (1111)  (231)
                    (312)
                    (321)
                    (1113)
                    (1122)
                    (1131)
                    (1212)
                    (1221)
                    (1311)
                    (2112)
                    (2121)
                    (2211)
                    (3111)
                    (11112)
                    (11121)
                    (11211)
                    (12111)
                    (21111)
                    (111111)
(End)
		

Crossrefs

The unordered version (integer partitions) is A002219, ranks A357976.
The unordered complement is A371795, even case A006827, ranks A371731.
The complement is counted by A371956.
These compositions have ranks A372120, complement A372119.
A237258 (aerated) counts biquanimous strict partitions, ranks A357854.
A321142 and A371794 count non-biquanimous strict partitions.
A371791 counts biquanimous sets, differences A232466.
A371792 counts non-biquanimous sets, differences A371793.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[2n], MemberQ[Total/@Subsets[#],n]&]],{n,0,5}] (* Gus Wiseman, Apr 19 2024 *)

Extensions

More terms from Alois P. Heinz, Jun 12 2017

A371783 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n that can be partitioned into d = A027750(n,k) blocks with equal sums.

Original entry on oeis.org

1, 2, 1, 3, 1, 5, 3, 1, 7, 1, 11, 6, 4, 1, 15, 1, 22, 14, 5, 1, 30, 10, 1, 42, 25, 6, 1, 56, 1, 77, 53, 30, 15, 7, 1, 101, 1, 135, 89, 8, 1, 176, 65, 21, 1, 231, 167, 55, 9, 1, 297, 1, 385, 278, 173, 28, 10, 1, 490, 1, 627, 480, 140, 91, 11, 1, 792, 343, 36, 1
Offset: 1

Views

Author

Gus Wiseman, Apr 14 2024

Keywords

Comments

These could be called d-quanimous partitions, cf. A002219, A064914, A321452.

Examples

			Triangle begins:
    1
    2   1
    3   1
    5   3   1
    7   1
   11   6   4   1
   15   1
   22  14   5   1
   30  10   1
   42  25   6   1
   56   1
   77  53  30  15   7   1
  101   1
  135  89   8   1
  176  65  21   1
Row n = 6 counts the following partitions:
  (6)       (33)      (222)     (111111)
  (33)      (321)     (2211)
  (42)      (2211)    (21111)
  (51)      (3111)    (111111)
  (222)     (21111)
  (321)     (111111)
  (411)
  (2211)
  (3111)
  (21111)
  (111111)
		

Crossrefs

Row lengths are A000005.
Column k = 1 is A000041.
Inserting zeros gives A371954.
Row sums are A372121.
A002219 (aerated) counts biquanimous partitions, ranks A357976.
A237258 aerated counts biquanimous strict partitions, ranks A357854.
A321142 and A371794 count non-biquanimous strict partitions.
A321451 counts non-quanimous partitions, ranks A321453.
A321452 counts quanimous partitions, ranks A321454.
A371736 counts non-quanimous strict partitons, complement A371737.
A371781 lists numbers with biquanimous prime signature, complement A371782.
A371789 counts non-quanimous sets, differences A371790.
A371796 counts quanimous sets, differences A371797.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    facs[n_]:=If[n<=1,{{}}, Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]], {d,Rest[Divisors[n]]}]];
    Table[Length[Select[IntegerPartitions[n], Select[facs[Times@@Prime/@#], Length[#]==k&&SameQ@@hwt/@#&]!={}&]],{n,1,8},{k,Divisors[n]}]

Extensions

More terms from Jinyuan Wang, Feb 13 2025
Name edited by Peter Munn, Mar 05 2025

A321142 Number of strict integer partitions of 2*n with no subset summing to n.

Original entry on oeis.org

0, 1, 2, 3, 5, 7, 11, 15, 23, 30, 43, 57, 79, 102, 138, 174, 232, 292, 375, 471, 602, 741, 935, 1148, 1425, 1733, 2137, 2571, 3156, 3789, 4557, 5470, 6582, 7796, 9317, 11027, 13058, 15400, 18159, 21249, 24971, 29170, 33986, 39596, 46073, 53219, 61711, 71330, 82171
Offset: 0

Views

Author

Gus Wiseman, Oct 28 2018

Keywords

Examples

			The a(1) = 1 through a(8) = 23 partitions:
  (2)  (4)    (6)    (8)      (10)     (12)     (14)       (16)
       (3,1)  (4,2)  (5,3)    (6,4)    (7,5)    (8,6)      (9,7)
              (5,1)  (6,2)    (7,3)    (8,4)    (9,5)      (10,6)
                     (7,1)    (8,2)    (9,3)    (10,4)     (11,5)
                     (5,2,1)  (9,1)    (10,2)   (11,3)     (12,4)
                              (6,3,1)  (11,1)   (12,2)     (13,3)
                              (7,2,1)  (5,4,3)  (13,1)     (14,2)
                                       (7,3,2)  (6,5,3)    (15,1)
                                       (7,4,1)  (8,4,2)    (7,5,4)
                                       (8,3,1)  (8,5,1)    (7,6,3)
                                       (9,2,1)  (9,3,2)    (9,4,3)
                                                (9,4,1)    (9,5,2)
                                                (10,3,1)   (9,6,1)
                                                (11,2,1)   (10,4,2)
                                                (8,3,2,1)  (10,5,1)
                                                           (11,3,2)
                                                           (11,4,1)
                                                           (12,3,1)
                                                           (13,2,1)
                                                           (6,5,4,1)
                                                           (7,4,3,2)
                                                           (9,4,2,1)
                                                           (10,3,2,1)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[UnsameQ@@#,!Or@@Table[SameQ[Total[#[[s]]],n/2],{s,Subsets[Range[Length[#]]]}]]&]],{n,2,20,2}]

Extensions

a(33)-a(48) from Giovanni Resta, Oct 30 2018
Showing 1-10 of 61 results. Next