cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321468 Number of factorizations of n! into factors > 1 that can be obtained by taking the multiset union of a choice of factorizations of each positive integer from 2 to n into factors > 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 4, 4, 10, 20, 40, 40, 116, 116, 232, 464, 1440, 1440, 4192, 4192, 11640, 23280, 46560, 46560, 157376
Offset: 0

Views

Author

Gus Wiseman, Nov 11 2018

Keywords

Comments

a(n) is the number of factorizations finer than (2*3*...*n) in the poset of factorizations of n! into factors > 1, ordered by refinement.

Examples

			The a(2) = 1 through a(8) = 10 factorizations:
2  2*3  2*3*4    2*3*4*5    2*3*4*5*6      2*3*4*5*6*7      2*3*4*5*6*7*8
        2*2*2*3  2*2*2*3*5  2*2*2*3*5*6    2*2*2*3*5*6*7    2*2*2*3*5*6*7*8
                            2*2*3*3*4*5    2*2*3*3*4*5*7    2*2*3*3*4*5*7*8
                            2*2*2*2*3*3*5  2*2*2*2*3*3*5*7  2*2*3*4*4*5*6*7
                                                            2*2*2*2*3*3*5*7*8
                                                            2*2*2*2*3*4*5*6*7
                                                            2*2*2*3*3*4*4*5*7
                                                            2*2*2*2*2*2*3*5*6*7
                                                            2*2*2*2*2*3*3*4*5*7
                                                            2*2*2*2*2*2*2*3*3*5*7
For example, 2*2*2*2*2*2*3*5*6*7 = (2)*(3)*(2*2)*(5)*(6)*(7)*(2*2*2), so (2*2*2*2*2*2*3*5*6*7) is counted under a(8).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Union[Sort/@Join@@@Tuples[facs/@Range[2,n]]]],{n,10}]