cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321490 Triangular table T[n,k] = (n+k)(n^2+k^2), 1 <= k <= n = 1, 2, 3, ...; read by rows.

Original entry on oeis.org

4, 15, 32, 40, 65, 108, 85, 120, 175, 256, 156, 203, 272, 369, 500, 259, 320, 405, 520, 671, 864, 400, 477, 580, 715, 888, 1105, 1372, 585, 680, 803, 960, 1157, 1400, 1695, 2048, 820, 935, 1080, 1261, 1484, 1755, 2080, 2465, 2916, 1111, 1248, 1417, 1624, 1875, 2176, 2533, 2952, 3439, 4000, 1464, 1625, 1820, 2055, 2336
Offset: 1

Views

Author

M. F. Hasler, Nov 22 2018

Keywords

Examples

			The table starts:
Row 1:    4;
Row 2:   15,  32;
Row 3:   40,  65, 108;
Row 4:   85, 120, 175, 256;
Row 5:  156, 203, 272, 369,  500;
Row 6:  259, 320, 405, 520,  671,  864;
Row 7:  400, 477, 580, 715,  888, 1105, 1372;
Row 8:  585, 680, 803, 960, 1157, 1400, 1695, 2048;
etc.
		

Crossrefs

Cf. A321491 (numbers of the form T(n,k) with n > k > 0).
Cf. A321492 (numbers which can be written at least twice in this form).
Cf. A033430 (diagonal), A053698 (column 1).
Cf. A198063 (read as a square array equals T(n,k) for all n, k >= 0).
Cf. A321500 (variant of this table with additional row 0 and column 0).

Programs

  • Mathematica
    t[n_, k_] := (n + k) (n^2 + k^2); Table[t[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, Nov 22 2018 *)
  • PARI
    A321490(n,k)=(n+k)*(n^2+k^2)
    A321490_row(n)=vector(n,k,(n+k)*(n^2+k^2))
    A321490_list(N=12)=concat(apply(A321490_row,[1..N]))

Formula

Diagonal: T(n,n) = 4*n^3 = A033430(n).
Column 1: T(n,1) = (n + 1)(n^2 + 1) = A053698(n) = (n^4-1)/(n-1) for n > 1.