A321500 Triangular table T(n,k) = (n+k)*(n^2+k^2), n >= k >= 0; read by rows n = 0, 1, 2, ...
0, 1, 4, 8, 15, 32, 27, 40, 65, 108, 64, 85, 120, 175, 256, 125, 156, 203, 272, 369, 500, 216, 259, 320, 405, 520, 671, 864, 343, 400, 477, 580, 715, 888, 1105, 1372, 512, 585, 680, 803, 960, 1157, 1400, 1695, 2048
Offset: 0
Examples
The table starts: n | T(n,k), k = 0..n: 0 | 0; 1 | 1, 4; 2 | 8, 15, 32; 3 | 27, 40, 65, 108; 4 | 64, 85, 120, 175, 256; 5 | 125, 156, 203, 272, 369, 500; 6 | 216, 259, 320, 405, 520, 671, 864; 7 | 343, 400, 477, 580, 715, 888, 1105, 1372; 8 | 512, 585, 680, 803, 960, 1157, 1400, 1695, 2048; etc.
Links
- M. F. Hasler, Rows n = 0..141 of triangle, flattened
Crossrefs
Programs
-
Magma
[[(n+k)*(n^2+k^2): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Nov 23 2018
-
Mathematica
t[n_, k_] := (n + k) (n^2 + k^2); Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Nov 22 2018 *)
-
PARI
A321500(n, k)=(n+k)*(n^2+k^2) A321500_row(n)=vector(n+1, k, (n+k--)*(n^2+k^2)) A321500_list(N=11)=concat(apply(A321500_row, [0..N]))
-
Sage
[[(n+k)*(n^2+k^2) for k in range(n+1)] for n in range(12)] # G. C. Greubel, Nov 23 2018
Formula
Sum_{k=0..n} T(n,k) = 5*n^2*(n+1)*(5*n+1)/12 = 5*A117066(n). - G. C. Greubel, Nov 23 2018