cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A321538 a(n) = A321536(A321537(n)).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 33, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 44, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 55, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 77, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 88, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 99, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 111, 11, 11, 11, 11, 11, 11, 11, 11, 0, 0, 22, 0
Offset: 0

Views

Author

N. J. A. Sloane, Nov 13 2018

Keywords

Comments

More than the usual number of terms are shown in order to reach some interesting terms.
Fixed points correspond to 0 alongside A033023. - Rémy Sigrist, Nov 16 2018

Crossrefs

A base-10 analog of A318925.

Formula

Delete a digit A in n if it either forms a run of length 1 or begins a substring AwAA, where w consists of runs of length 1. - Charlie Neder, Dec 16 2018

A321537 Write n in base 10, shorten all the runs of successive identical digits by 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 2, 0
Offset: 0

Views

Author

N. J. A. Sloane, Nov 13 2018

Keywords

Comments

More than the usual number of terms are shown in order to reach some interesting terms.
All primes vanish except those in A050758.

Examples

			22 -> 2, so a(22)=2 is the first term > 1.
10 in not reached until a(1100) = 10.
		

Crossrefs

A base-10 analog of A318921.

Programs

  • Maple
    read("transforms"):
    A321537 := proc(n)
        local dgsin,dgsout,pos ;
        dgsin := convert(n,base,10) ;
        dgsout := [] ;
        for pos from 2 to nops(dgsin) do
            if op(pos,dgsin) = op(pos-1,dgsin) then
                dgsout := [op(pos,dgsin),op(dgsout)] ;
            end if;
        end do:
        digcatL(dgsout) ;
    end proc: # R. J. Mathar, Nov 14 2018
  • Mathematica
    Array[FromDigits[Join @@ Map[Most, Split@ IntegerDigits@ #]] &, 123] (* Michael De Vlieger, Nov 13 2018 *)
  • PARI
    a(n)={my(v=digits(n)); my(L=List()); for(i=1, #v, my(t=v[i]); if(i>1 && t==v[i-1], listput(L,t))); fromdigits(Vec(L))} \\ Andrew Howroyd, Nov 13 2018
  • Python
    from re import split
    def A321537(n):
        return int('0'+''.join(d[:-1] for d in split('(0+)|(1+)|(2+)|(3+)|(4+)|(5+)|(6+)|(7+)|(8+)|(9+)',str(n)) if d != '' and d != None)) # Chai Wah Wu, Nov 13 2018
    
Showing 1-2 of 2 results.