A321572 Related to the set of Motzkin trees where all leaves are at the same unary height 2.
0, 1, 0, 1, 1, 3, 2, 9, 7, 27, 25, 85, 86, 287, 296, 975, 1065, 3369, 3825, 11887, 13836, 42389, 50597, 152549, 186186, 554103, 688494, 2027304, 2559958, 7461971, 9561298, 27617581, 35846863, 102707431, 134874639, 383561963, 509090498, 1437822479, 1927045425
Offset: 0
Keywords
Links
- Olivier Bodini, Danièle Gardy, Bernhard Gittenberger, Zbigniew Gołębiewski, On the number of unary-binary tree-like structures with restrictions on the unary height, arXiv:1510.01167v1 [math.CO], 2015.
Crossrefs
Cf. A321396.
Programs
-
Maple
gf := -(sqrt(2*z*(sqrt(2*z*(sqrt(1-4*z^2)-1)+1)-1)+1)-1)/(2*z^3): series(gf,z,44): seq(coeff(%,z,n), n=0..38);
-
Mathematica
CoefficientList[(1 - Sqrt[2 Sqrt[2 Sqrt[1 - 4z^2] z - 2z + 1] z - 2z + 1])/ (2z^3) + O[z]^40, z] (* Jean-François Alcover, Jun 03 2019 *)
Formula
G.f.: (1 - sqrt(1 - 2*z + 2*z*sqrt(1 - 2*z + 2*z*sqrt(1 - 4*z^2))))/(2*z^3).
Comments