A321575 Nexus primary pretenders: a(n) is the smallest composite k such that n^k - (n-1)^k == 1 (mod k).
9, 4, 341, 4, 6, 4, 9, 4, 14, 4, 6, 4, 9, 4, 21, 4, 6, 4, 9, 4, 15, 4, 6, 4, 9, 4, 10, 4, 6, 4, 9, 4, 62, 4, 6, 4, 9, 4, 49, 4, 6, 4, 9, 4, 33, 4, 6, 4, 9, 4, 14, 4, 6, 4, 9, 4, 10, 4, 6, 4, 9, 4, 65, 4, 6, 4, 9, 4, 49, 4, 6, 4, 9, 4, 111, 4, 6, 4, 9, 4, 15
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
Programs
-
Maple
Comps:= remove(isprime, [$4..561]): f:= proc(n) local k; for k in Comps do if n&^k - (n-1)&^k - 1 mod k = 0 then return k fi od end proc: map(f, [$0..100]); # Robert Israel, Nov 27 2018
-
Mathematica
a[n_]:=Module[{k=4}, While[PrimeQ[k] || Mod[n^k-(n-1)^k,k]!=1, k++]; k]; Array[a, 100, 0] (* Amiram Eldar, Nov 13 2018 *)
-
PARI
a(n)=forcomposite(k=4,,Mod(n,k)^k-Mod(n-1,k)^k==1&&return(k)) \\ M. F. Hasler, Nov 13 2018
Formula
a(n) = 4 iff n == 1,3,5 (mod 6), thus n is odd.
a(n) = 6 iff n == 4 (mod 6).
a(n) = 9 iff n == 0 (mod 6).
Extensions
More terms from Amiram Eldar, Nov 13 2018
Comments