A321576 a(n) is the smallest b > 1 such that b^n - (b-1)^n has all divisors d == 1 (mod n).
2, 2, 2, 3, 2, 4, 2, 45, 3, 6, 2, 301, 2, 15, 10, 121, 2, 64, 2, 2101, 7, 12, 2, 1900081, 6, 27, 18, 225, 2, 9241, 2, 31825, 12, 52, 31, 537850405, 2, 96, 26, 13568281, 2, 232, 2, 35421, 486, 24, 2, 4164776161, 7, 2101, 68, 10765, 2, 145180, 1925
Offset: 1
Examples
a(6) = 4 since b^n - (b-1)^n = 4^6 - 3^6 = 3367 has divisors 1, 7, 13, 37, 91, 259, 481, and 3367, each of which is congruent to 1 (mod 6), and b = 4 is the smallest such number satisfying this requirement.
Links
- FactorDB, Status of 20301625^56-20301624^56
- Kevin P. Thompson, Factorizations to support known terms for n = 1..95
Crossrefs
Cf. A298076.
Programs
-
Mathematica
primes[n_]:=First@# & /@ FactorInteger[n]; bQ[m_, n_]:=AllTrue[primes[m] -1, Divisible[#, n]&] ; a[n_]:=Module[{b=2}, While[!bQ[b^n - (b-1)^n, n], b++]; b]; Array[a, 100] (* Amiram Eldar, Nov 13 2018 *)
-
PARI
A321576(n)=if(n<4||isprime(n),2,for(b=2,oo,Set(factor(b^n-(b-1)^n)[,1]%n)==[1]&&return(b))) \\ M. F. Hasler, Nov 18 2018
Extensions
a(12)-a(23) from Amiram Eldar, Nov 13 2018
a(24)-a(55) from Kevin P. Thompson, May 27 2022
Comments