A321578 a(n) is the maximum value of k such that A007504(k) <= prime(n).
1, 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15
Offset: 1
Keywords
Examples
a(1)=1 since prime(1)=2 and 1 is max k such that A007504(k) <= 2. a(5)=3 since prime(5)=11 and 3 is max k such that A007504(k) <= 11. n=4 (in A013916). A(4)=17=prime(7), so b(4)=7. n=7 (not in A013916). A(7)=58 < 59=prime(17), so b(7)=17.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
nn = 75; MapIndexed[Set[s[First[#2]], #1] &, Accumulate[Prime@ Range[nn]]]; k = 1; Table[p = Prime[n]; While[s[k] <= p, k++]; k - 1, {n, nn}] (* Michael De Vlieger, Jun 29 2025 *)
-
PARI
a(n) = my(k=0, p=0, s=0); while(s <= prime(n), k++; p=nextprime(p+1); s+=p); k-1; \\ Michel Marcus, Feb 19 2019
-
Perl
use ntheory ':all'; sub a { my $p = nth_prime($[0]); my($s, $q) = (0, 2); while ($s <= $p) { $s += $q; $q = next_prime($q) }; prime_count($q-1)-1 }; print join(", ", map { a($) } 1..100), "\n"; # Daniel Suteu, Jan 26 2019
Comments