A321579 Number of n-tuples of 4 elements excluding reverse duplicates and those consisting of repetitions of the same element only.
0, 0, 6, 36, 132, 540, 2076, 8316, 32892, 131580, 524796, 2099196, 8390652, 33562620, 134225916, 536903676, 2147516412, 8590065660, 34359869436, 137439477756, 549756338172, 2199025352700, 8796095119356, 35184380477436, 140737496743932
Offset: 0
Examples
a(2) = 6 because {a,c,g,t} give six 2-tuples (duples): {a,c}, {a,g}, {a,t}, {c,g}, {c,t}, {g,t} as 4: {a,a}, {c,c}, {g,g}, {t,t} (consisting of the same element only) and 6 reverse duplicates: {c,a}, {g,a}, {t,a}, {g,c}, {t,c}, {t,g} are excluded ({c,a} is the duplicate of {a,c}, etc.), leaving 6 from 16 possible 2-tuples.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,0,-20,16).
Crossrefs
Cf. A032121.
Programs
-
Mathematica
a[n_]:=(2^(# - 2)*((-1)^(# + 1) + 3) + 2^(2*# - 1) - 4)&/@ Range@n; a[25] (* or *) CoefficientList[Series[6*(8*x^3-x^2-x)/(16*x^4-20*x^3+5*x-1), {x, 0, 20}], x] LinearRecurrence[{5,0,-20,16},{0,0,6,36,132},30] (* Harvey P. Dale, Mar 20 2023 *) -
PARI
concat([0,0], Vec(6*x^2*(1 + x - 8*x^2) / ((1 - x)*(1 - 2*x)*(1 + 2*x)*(1 - 4*x)) + O(x^40))) \\ Colin Barker, Nov 14 2018
Formula
a(n) = (2^(n-2)*((-1)^(n+1) + 3) + 2^(2*n-1) - 4) for n > 0.
a(n) = A032121(n) - 4 for n > 2.
G.f.: 6*x^2*(8*x^2 - x - 1)/((x-1)*(2*x+1)*(2*x-1)*(4*x-1)).
a(n) = 5*a(n-1) - 20*a(n-3) + 16*a(n-4). - Colin Barker, Nov 14 2018
Comments