cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321579 Number of n-tuples of 4 elements excluding reverse duplicates and those consisting of repetitions of the same element only.

Original entry on oeis.org

0, 0, 6, 36, 132, 540, 2076, 8316, 32892, 131580, 524796, 2099196, 8390652, 33562620, 134225916, 536903676, 2147516412, 8590065660, 34359869436, 137439477756, 549756338172, 2199025352700, 8796095119356, 35184380477436, 140737496743932
Offset: 0

Views

Author

Mikk Heidemaa, Nov 13 2018

Keywords

Comments

Also the number of distinct DNA or RNA sequences of length n if the reverse copies and homopolymeric oligonucleotides (i.e., repetitions of the same nucleobases: aaa..., ccc..., ggg..., and ttt... (or uuu...)) are excluded.

Examples

			a(2) = 6 because {a,c,g,t} give six 2-tuples (duples): {a,c}, {a,g}, {a,t}, {c,g}, {c,t}, {g,t} as 4: {a,a}, {c,c}, {g,g}, {t,t} (consisting of the same element only) and 6 reverse duplicates: {c,a}, {g,a}, {t,a}, {g,c}, {t,c}, {t,g} are excluded ({c,a} is the duplicate of {a,c}, etc.), leaving 6 from 16 possible 2-tuples.
		

Crossrefs

Cf. A032121.

Programs

  • Mathematica
    a[n_]:=(2^(# - 2)*((-1)^(# + 1) + 3) + 2^(2*# - 1) - 4)&/@ Range@n; a[25] (* or *)
    CoefficientList[Series[6*(8*x^3-x^2-x)/(16*x^4-20*x^3+5*x-1), {x, 0, 20}], x]
    LinearRecurrence[{5,0,-20,16},{0,0,6,36,132},30] (* Harvey P. Dale, Mar 20 2023 *)
  • PARI
    concat([0,0], Vec(6*x^2*(1 + x - 8*x^2) / ((1 - x)*(1 - 2*x)*(1 + 2*x)*(1 - 4*x)) + O(x^40))) \\ Colin Barker, Nov 14 2018

Formula

a(n) = (2^(n-2)*((-1)^(n+1) + 3) + 2^(2*n-1) - 4) for n > 0.
a(n) = A032121(n) - 4 for n > 2.
G.f.: 6*x^2*(8*x^2 - x - 1)/((x-1)*(2*x+1)*(2*x-1)*(4*x-1)).
a(n) = 5*a(n-1) - 20*a(n-3) + 16*a(n-4). - Colin Barker, Nov 14 2018