A321591 Partitioned 2nd-order Eulerian numbers forming an "Eulerian pyramid" (tetrahedron).
1, 1, 1, 1, 1, 4, 4, 1, 4, 1, 1, 11, 11, 11, 36, 11, 1, 11, 11, 1, 1, 26, 26, 66, 196, 66, 26, 196, 196, 26, 1, 26, 66, 26, 1, 1, 57, 57, 302, 848, 302, 302, 1898, 1898, 302, 57, 848, 1898, 848, 57, 1, 57, 302, 302, 57, 1, 1, 120, 120, 1191, 3228, 1191, 2416, 13644
Offset: 0
Examples
The first few slices of the tetrahedron (and row sums) are: 1 (1); i=0, N=0, (j,k)=(0,0) ------------------------ 1 (1); i=0, N=1, (j,k)=(0,0) 1 1 (2); i=1, N=1, (j,k)=(1,0) (0,1) ------------------------ 1 (1); i=0, N=2, (j,k)=(0,0) 4 4 (8); i=1, N=2, (j,k)=(1,0) (0,1) 1 4 1 (6); i=2, N=2, (j,k)=(2,0) (1,1) (0,2) ------------------------ 1 (1); i=0, N=3, (j,k)=(0,0) 11 11 (22); i=1, N=3, (j,k)=(1,0) (0,1) 11 36 11 (58); i=2, N=3, (j,k)=(2,0) (1,1) (0,2) 1 11 11 1 (24); i=3, N=3, (j,k)=(3,0) (2,1) (1,2) (0,3) ------------------------ 1 (1); i=0, N=4, (j,k)=(0,0) 26 26 (52); i=1, N=4, (j,k)=(1,0) (0,1) 66 196 66 (328); i=2, N=4, (j,k)=(2,0) (1,1) (0,2) 26 196 196 26 (444); i=3, N=4, (j,k)=(3,0) (2,1) (1,2) (0,3) 1 26 66 26 1 (120); i=4, N=4, (j,k)=(4,0) (3,1) (2,2) (1,3) (0,4)
Comments