A321621 The Riordan square of the Motzkin numbers, triangle read by rows, T(n, k) for 0 <= k <= n.
1, 1, 1, 2, 3, 1, 4, 8, 5, 1, 9, 21, 18, 7, 1, 21, 55, 58, 32, 9, 1, 51, 145, 177, 123, 50, 11, 1, 127, 385, 525, 431, 224, 72, 13, 1, 323, 1030, 1532, 1429, 889, 369, 98, 15, 1, 835, 2775, 4428, 4572, 3269, 1639, 566, 128, 17, 1
Offset: 0
Examples
[0][ 1] [1][ 1, 1] [2][ 2, 3, 1] [3][ 4, 8, 5, 1] [4][ 9, 21, 18, 7, 1] [5][ 21, 55, 58, 32, 9, 1] [6][ 51, 145, 177, 123, 50, 11, 1] [7][ 127, 385, 525, 431, 224, 72, 13, 1] [8][ 323, 1030, 1532, 1429, 889, 369, 98, 15, 1] [9][ 835, 2775, 4428, 4572, 3269, 1639, 566, 128, 17, 1]
Links
- Paul Barry, Notes on Riordan arrays and lattice paths, arXiv:2504.09719 [math.CO], 2025. See pp. 16, 29.
Crossrefs
Programs
-
Maple
# The function RiordanSquare is defined in A321620. Motzkin := (1 - x - sqrt(1 - 2*x - 3*x^2))/(2*x^2); RiordanSquare(Motzkin, 10);
-
Mathematica
(* The function RiordanSquare is defined in A321620. *) Motzkin = (1 - x - Sqrt[1 - 2 x - 3 x^2])/(2 x^2); M = RiordanSquare[Motzkin, 10]; M // Flatten (* Jean-François Alcover, Nov 24 2018 *)
-
Sage
# uses[riordan_square from A321620] riordan_square((1 - x - sqrt(1 - 2*x - 3*x^2))/(2*x^2), 10)