cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321621 The Riordan square of the Motzkin numbers, triangle read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 4, 8, 5, 1, 9, 21, 18, 7, 1, 21, 55, 58, 32, 9, 1, 51, 145, 177, 123, 50, 11, 1, 127, 385, 525, 431, 224, 72, 13, 1, 323, 1030, 1532, 1429, 889, 369, 98, 15, 1, 835, 2775, 4428, 4572, 3269, 1639, 566, 128, 17, 1
Offset: 0

Views

Author

Peter Luschny, Nov 22 2018

Keywords

Examples

			[0][   1]
[1][   1,    1]
[2][   2,    3,    1]
[3][   4,    8,    5,    1]
[4][   9,   21,   18,    7,    1]
[5][  21,   55,   58,   32,    9,    1]
[6][  51,  145,  177,  123,   50,   11,   1]
[7][ 127,  385,  525,  431,  224,   72,  13,   1]
[8][ 323, 1030, 1532, 1429,  889,  369,  98,  15,  1]
[9][ 835, 2775, 4428, 4572, 3269, 1639, 566, 128, 17, 1]
		

Crossrefs

T(n, 0) = A001006 (Motzkin), A111961 (row sums), A000007 (alternating row sums).
Cf. A321620.

Programs

  • Maple
    # The function RiordanSquare is defined in A321620.
    Motzkin := (1 - x - sqrt(1 - 2*x - 3*x^2))/(2*x^2); RiordanSquare(Motzkin, 10);
  • Mathematica
    (* The function RiordanSquare is defined in A321620. *)
    Motzkin = (1 - x - Sqrt[1 - 2 x - 3 x^2])/(2 x^2);
    M = RiordanSquare[Motzkin, 10];
    M // Flatten (* Jean-François Alcover, Nov 24 2018 *)
  • Sage
    # uses[riordan_square from A321620]
    riordan_square((1 - x - sqrt(1 - 2*x - 3*x^2))/(2*x^2), 10)