A321622 The Riordan square of the Fine numbers, triangle read by rows, T(n, k) for 0 <= k<= n.
1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 4, 2, 1, 1, 6, 10, 7, 3, 1, 1, 18, 31, 19, 10, 4, 1, 1, 57, 97, 61, 29, 13, 5, 1, 1, 186, 316, 196, 96, 40, 16, 6, 1, 1, 622, 1054, 652, 316, 136, 52, 19, 7, 1, 1, 2120, 3586, 2210, 1072, 458, 181, 65, 22, 8, 1, 1
Offset: 0
Examples
[0] [ 1] [1] [ 1, 1] [2] [ 0, 1, 1] [3] [ 1, 1, 1, 1] [4] [ 2, 4, 2, 1, 1] [5] [ 6, 10, 7, 3, 1, 1] [6] [ 18, 31, 19, 10, 4, 1, 1] [7] [ 57, 97, 61, 29, 13, 5, 1, 1] [8] [ 186, 316, 196, 96, 40, 16, 6, 1, 1] [9] [ 622, 1054, 652, 316, 136, 52, 19, 7, 1, 1]
Crossrefs
Programs
-
Maple
# The function RiordanSquare is defined in A321620. Fine := 1 + (1 - sqrt(1 - 4*x))/(3 - sqrt(1 - 4*x)); RiordanSquare(Fine, 10);
-
Mathematica
(* The function RiordanSquare is defined in A321620. *) FineGF = 1 + (1 - Sqrt[1 - 4x])/(3 - Sqrt[1 - 4x]); RiordanSquare[FineGF, 10] (* Jean-François Alcover, Jun 15 2019, from Maple *)
-
Sage
# uses[riordan_square from A321620] riordan_square(1 + (1 - sqrt(1 - 4*x))/(3 - sqrt(1 - 4*x)), 10)
Comments