A321623 The Riordan square of the large Schröder numbers, triangle read by rows, T(n, k) for 0 <= k <= n.
1, 2, 2, 6, 10, 4, 22, 46, 32, 8, 90, 214, 196, 88, 16, 394, 1018, 1104, 672, 224, 32, 1806, 4946, 6020, 4448, 2048, 544, 64, 8558, 24470, 32400, 27432, 15584, 5792, 1280, 128, 41586, 122926, 173572, 162680, 107408, 49824, 15552, 2944, 256
Offset: 0
Examples
[0][ 1] [1][ 2, 2] [2][ 6, 10, 4] [3][ 22, 46, 32, 8] [4][ 90, 214, 196, 88, 16] [5][ 394, 1018, 1104, 672, 224, 32] [6][ 1806, 4946, 6020, 4448, 2048, 544, 64] [7][ 8558, 24470, 32400, 27432, 15584, 5792, 1280, 128] [8][ 41586, 122926, 173572, 162680, 107408, 49824, 15552, 2944, 256] [9][206098, 625522, 929248, 942592, 697408, 379840, 149248, 40192, 6656, 512]
Crossrefs
Programs
-
Maple
# The function RiordanSquare is defined in A321620. LargeSchröder := x -> (1 - x - sqrt(1 - 6*x + x^2))/(2*x); RiordanSquare(LargeSchröder(x), 10);
-
Mathematica
(* The function RiordanSquare is defined in A321620. *) LargeSchröder[x_] := (1 - x - Sqrt[1 - 6*x + x^2])/(2*x); RiordanSquare[LargeSchröder[x], 10] (* Jean-François Alcover, Jun 15 2019, from Maple *)
-
Sage
# uses[riordan_square from A321620] riordan_square((1 - x - sqrt(1 - 6*x + x^2))/(2*x), 10)
Formula
T(n, k) = 2^k*A133367(n,k). - Philippe Deléham, Feb 05 2020
Comments