cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321623 The Riordan square of the large Schröder numbers, triangle read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 2, 2, 6, 10, 4, 22, 46, 32, 8, 90, 214, 196, 88, 16, 394, 1018, 1104, 672, 224, 32, 1806, 4946, 6020, 4448, 2048, 544, 64, 8558, 24470, 32400, 27432, 15584, 5792, 1280, 128, 41586, 122926, 173572, 162680, 107408, 49824, 15552, 2944, 256
Offset: 0

Views

Author

Peter Luschny, Nov 22 2018

Keywords

Comments

Triangle, read by rows,given by [2,1,2,1,2,1,2,1,...]DELTA[2,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 05 2020

Examples

			[0][     1]
[1][     2,      2]
[2][     6,     10,      4]
[3][    22,     46,     32,      8]
[4][    90,    214,    196,     88,     16]
[5][   394,   1018,   1104,    672,    224,     32]
[6][  1806,   4946,   6020,   4448,   2048,    544,     64]
[7][  8558,  24470,  32400,  27432,  15584,   5792,   1280,   128]
[8][ 41586, 122926, 173572, 162680, 107408,  49824,  15552,  2944,  256]
[9][206098, 625522, 929248, 942592, 697408, 379840, 149248, 40192, 6656, 512]
		

Crossrefs

T(n, 0) = A006318 (large Schröder), A321574 (row sums), A000007 (alternating row sums).

Programs

  • Maple
    # The function RiordanSquare is defined in A321620.
    LargeSchröder := x -> (1 - x - sqrt(1 - 6*x + x^2))/(2*x);
    RiordanSquare(LargeSchröder(x), 10);
  • Mathematica
    (* The function RiordanSquare is defined in A321620. *)
    LargeSchröder[x_] := (1 - x - Sqrt[1 - 6*x + x^2])/(2*x);
    RiordanSquare[LargeSchröder[x], 10] (* Jean-François Alcover, Jun 15 2019, from Maple *)
  • Sage
    # uses[riordan_square from A321620]
    riordan_square((1 - x - sqrt(1 - 6*x + x^2))/(2*x), 10)

Formula

T(n, k) = 2^k*A133367(n,k). - Philippe Deléham, Feb 05 2020