A321627 The Riordan square of the double factorial of odd numbers. Triangle T(n, k), 0 <= k <= n, read by rows.
1, 1, 1, 3, 4, 1, 15, 21, 7, 1, 105, 144, 48, 10, 1, 945, 1245, 372, 84, 13, 1, 10395, 13140, 3357, 726, 129, 16, 1, 135135, 164745, 35415, 6873, 1233, 183, 19, 1, 2027025, 2399040, 434520, 73116, 12306, 1920, 246, 22, 1
Offset: 0
Examples
Triangle starts: [0][ 1] [1][ 1, 1] [2][ 3, 4, 1] [3][ 15, 21, 7, 1] [4][ 105, 144, 48, 10, 1] [5][ 945, 1245, 372, 84, 13, 1] [6][ 10395, 13140, 3357, 726, 129, 16, 1] [7][135135, 164745, 35415, 6873, 1233, 183, 19, 1]
Crossrefs
Programs
-
Maple
# The function RiordanSquare is defined in A321620. cf := proc(dim) local k, m; m := 1; for k from dim by -1 to 1 do m := 1 - k*x/m od; 1/m end: RiordanSquare(cf(9), 9);
-
Mathematica
(* The function RiordanSquare is defined in A321620. *) cf[dim_] := Module[{k, m=1}, For[k=dim, k >= 1, k--, m = 1 - k*x/m]; 1/m]; RiordanSquare[cf[9], 9] (* Jean-François Alcover, Jun 15 2019, from Maple *)
Comments