A321634 Number of arrangements of n 1's, n 2's, ..., n n's avoiding equal consecutive terms.
1, 1, 2, 174, 2265024, 7946203275000, 12229789732207993835280, 12202002913678756821228939869239920, 10937192762438008527903830198163831816546577931520, 11655577382287102750765311537460065620507094071664576111302628243840
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..26
- Mathematics.StackExchange, Find the number of k 1's, k 2's, ... , k n's - total kn cards, Apr 08 2012.
Programs
-
PARI
{a(n) = sum(i=n, n^2, i!*polcoef(sum(j=1, n, (-1)^(n-j)*binomial(n-1, j-1)*x^j/j!)^n, i))} \\ Seiichi Manyama, May 27 2019
Formula
a(n) ~ n^(n^2 - n/2 + 1) / ((2*Pi)^((n-1)/2) * exp(n - 5/12)). - Vaclav Kotesovec, Nov 24 2018