A321647 Number of distinct row/column permutations of the Ferrers diagram of the integer partition with Heinz number n.
1, 1, 1, 1, 1, 4, 1, 1, 1, 6, 1, 6, 1, 8, 6, 1, 1, 6, 1, 9, 12, 10, 1, 8, 1, 12, 1, 12, 1, 36, 1, 1, 20, 14, 8, 12, 1, 16, 30, 12, 1, 72, 1, 15, 9, 18, 1, 10, 1, 9, 42, 18, 1, 8, 20, 16, 56, 20, 1, 72, 1, 22, 18, 1, 40, 120, 1, 21, 72, 72, 1, 20, 1, 24, 9, 24, 10, 180, 1, 15, 1, 26, 1, 144, 70, 28, 90, 20, 1, 72, 30, 27, 110, 30, 112, 12, 1, 12
Offset: 1
Keywords
Examples
The a(10) = 6 permutations: o o o o o o o o o o o o o o o o o o o o o o o o The a(21) = 12 permutations: o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; Table[Length[Permutations[primeMS[n]]]*Length[Permutations[conj[primeMS[n]]]],{n,50}]
-
PARI
A008480(n) = {my(sig=factor(n)[, 2]); vecsum(sig)!/factorback(apply(k->k!, sig))}; \\ From A008480 A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)}; A122111(n) = if(1==n,n,prime(bigomega(n))*A122111(A064989(n))); A321647(n) = (A008480(n) * A008480(A122111(n))); \\ Antti Karttunen, Feb 09 2019
Extensions
More terms from Antti Karttunen, Feb 09 2019
Comments