A321660 Number of nonnegative integer matrices with sum of entries equal to n and no zero rows or columns, whose entries are all distinct.
1, 1, 1, 5, 5, 9, 45, 49, 85, 125, 233, 273, 417, 529, 745, 2573, 2861, 4761, 6837, 10489, 14317, 22637, 28289, 40041, 52041, 70177, 88561, 117605, 234773, 274761, 407469, 553681, 792613, 1052525, 1493033, 1959009, 3135537, 3904129, 5475673, 7173725, 9853325
Offset: 0
Keywords
Examples
The a(5) = 9 matrices: [5] [4 1] [3 2] [2 3] [1 4] . [4] [3] [2] [1] [1] [2] [3] [4]
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}]; multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]]; Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],UnsameQ@@Join@@prs2mat[#]]&]],{n,5}]
-
PARI
seq(n)={my(B=vector((sqrtint(8*(n+1))+1)\2, n, if(n==1, 1, (n-1)!*numdiv(n-1) + n!*(numdiv(n) - 2)))); apply(p->sum(i=0, poldegree(p), B[i+1]*polcoef(p, i)), Vec(prod(k=1, n, 1 + x^k*y + O(x*x^n))))} \\ Andrew Howroyd, Nov 16 2018
Formula
a(n) = Sum_{k>=1} (k!*A000005(k) + (k+1)!*(A000005(k+1) - 2))*A008289(n,k) for n > 0. - Andrew Howroyd, Nov 17 2018
Extensions
Terms a(11) and beyond from Andrew Howroyd, Nov 16 2018