A321661 Number of non-isomorphic multiset partitions of weight n where the nonzero entries of the incidence matrix are all distinct.
1, 1, 1, 4, 4, 7, 22, 25, 40, 58, 186, 204, 347, 478, 734, 2033, 2402, 3814, 5464, 8142, 11058, 30142, 34437, 55940, 77794, 116954, 156465, 229462, 533612, 640544, 994922, 1397896, 2048316, 2778750, 3987432, 5292293, 11921070, 14076550, 21802928, 29917842, 44080285
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the a(1) = 1 through a(6) = 22 multiset partitions: {{1}} {{11}} {{111}} {{1111}} {{11111}} {{111111}} {{122}} {{1222}} {{11222}} {{112222}} {{1}{11}} {{1}{111}} {{12222}} {{122222}} {{1}{22}} {{1}{222}} {{1}{1111}} {{122333}} {{11}{111}} {{1}{11111}} {{11}{222}} {{11}{1111}} {{1}{2222}} {{1}{11222}} {{11}{1222}} {{11}{2222}} {{112}{222}} {{11}{2333}} {{1}{22222}} {{122}{222}} {{1}{22333}} {{122}{333}} {{2}{11222}} {{22}{1222}} {{1}{11}{111}} {{1}{11}{222}} {{1}{22}{222}} {{1}{22}{333}} {{2}{11}{222}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
PARI
\\ here b(n) is A059849(n). b(n)={sum(k=0, n, stirling(n,k,1)*sum(i=0, k, stirling(k,i,2))^2)} seq(n)={my(B=vector((sqrtint(8*(n+1))+1)\2, n, b(n-1))); apply(p->sum(i=0, poldegree(p), B[i+1]*polcoef(p,i)), Vec(prod(k=1, n, 1 + x^k*y + O(x*x^n))))} \\ Andrew Howroyd, Nov 16 2018
Formula
Extensions
Terms a(11) and beyond from Andrew Howroyd, Nov 16 2018
Comments