A321662 Number of non-isomorphic multiset partitions of weight n whose incidence matrix has all distinct entries.
1, 1, 1, 3, 3, 5, 13, 15, 23, 33, 49, 59, 83, 101, 133, 281, 321, 477, 655, 941, 1249, 1795, 2241, 3039, 3867, 5047, 6257, 8063, 11459, 13891, 18165, 23149, 29975, 37885, 49197, 61829, 89877, 109165, 145673, 185671, 246131, 310325, 408799, 514485, 668017, 871383
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the a(3) = 3 through a(7) = 15 multiset partitions: {{111}} {{1111}} {{11111}} {{111111}} {{1111111}} {{122}} {{1222}} {{11222}} {{112222}} {{1112222}} {{1}{11}} {{1}{111}} {{12222}} {{122222}} {{1122222}} {{1}{1111}} {{122333}} {{1222222}} {{11}{111}} {{1}{11111}} {{1223333}} {{11}{1111}} {{1}{111111}} {{1}{11222}} {{11}{11111}} {{11}{1222}} {{111}{1111}} {{112}{222}} {{1}{112222}} {{122}{222}} {{11}{12222}} {{2}{11222}} {{112}{2222}} {{22}{1222}} {{122}{2222}} {{1}{11}{111}} {{2}{112222}} {{22}{12222}} {{1}{11}{1111}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
(* b = A121860 *) b[n_] := Sum[n!/(d! (n/d)!), {d, Divisors[n]}]; (* c = A008289 *) c[n_, k_] := c[n, k] = If[n < k || k < 1, 0, If[n == 1, 1, c[n - k, k] + c[n - k, k - 1]]]; a[n_] := If[n == 0, 1, Sum[ (b[k] + b[k + 1] - 2) c[n, k], {k, 1, n}]]; a /@ Range[0, 45] (* Jean-François Alcover, Sep 14 2019 *)
-
PARI
\\ here b(n) is A121860(n). b(n)={sumdiv(n, d, n!/(d!*(n/d)!))} seq(n)={my(B=vector((sqrtint(8*(n+1))+1)\2, n, if(n==1, 1, b(n-1)+b(n)-2))); apply(p->sum(i=0, poldegree(p), B[i+1]*polcoef(p, i)), Vec(prod(k=1, n, 1 + x^k*y + O(x*x^n))))} \\ Andrew Howroyd, Nov 16 2018
Formula
a(n) = Sum_{k>=1} (A121860(k) + A121860(k+1) - 2)*A008289(n,k) for n > 0. - Andrew Howroyd, Nov 17 2018
Extensions
Terms a(11) and beyond from Andrew Howroyd, Nov 16 2018
Comments