cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321672 Number of chiral pairs of rows of length 5 using up to n colors.

Original entry on oeis.org

0, 0, 12, 108, 480, 1500, 3780, 8232, 16128, 29160, 49500, 79860, 123552, 184548, 267540, 378000, 522240, 707472, 941868, 1234620, 1596000, 2037420, 2571492, 3212088, 3974400, 4875000, 5931900, 7164612, 8594208, 10243380, 12136500
Offset: 0

Views

Author

Robert A. Russell, Nov 16 2018

Keywords

Examples

			For a(0)=0 and  a(1)=0, there are no chiral rows using fewer than two colors. For a(2)=12, the chiral pairs are AAAAB-BAAAA, AAABA-ABAAA, AAABB-BBAAA, AABAB-BABAA, AABBA-ABBAA, AABBB-BBBAAA, ABAAB-BAABA, ABABB-BBABA, ABBAB-BABBA, ABBBB-BBBBA, BAABB-BBAAB, and BABBB-BBBAB.
		

Crossrefs

Row 5 of A293500.
Cf. A000584 (oriented), A168178 (unoriented), A000578 (achiral).

Programs

  • Mathematica
    Table[(n^5-n^3)/2,{n,0,40}]
    LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 0, 12, 108, 480, 1500}, 40]
  • PARI
    a(n)=(n^5-n^3)/2 \\ Charles R Greathouse IV, Oct 21 2022

Formula

a(n) = (n^5 - n^3) / 2.
a(n) = (A000584(n) - A000578(n)) / 2.
a(n) = A000584(n) - A168178(n) = A168178(n) - A000578(n).
G.f.: (Sum_{j=1..5} S2(5,j)*j!*x^j/(1-x)^(j+1) - Sum_{j=1..3} S2(3,j)*j!*x^j/(1-x)^(j+1)) / 2, where S2 is the Stirling subset number A008277.
G.f.: x * Sum_{k=1..4} A145883(5,k) * x^k / (1-x)^6.
E.g.f.: (Sum_{k=1..5} S2(5,k)*x^k - Sum_{k=1..3} S2(3,k)*x^k) * exp(x) / 2, where S2 is the Stirling subset number A008277.
For n>5, a(n) = Sum_{j=1..6} -binomial(j-7,j) * a(n-j).