A321677 Number of non-isomorphic set multipartitions (multisets of sets) of weight n with no singletons.
1, 0, 1, 1, 4, 4, 16, 22, 70, 132, 375, 848, 2428, 6256, 18333, 52560, 161436, 500887, 1624969, 5384625, 18438815, 64674095, 233062429, 859831186, 3248411250, 12545820860, 49508089411, 199410275018, 819269777688, 3430680180687, 14633035575435, 63535672197070
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the a(2) = 1 through a(6) = 16 set multipartitions: {{1,2}} {{1,2,3}} {{1,2,3,4}} {{1,2,3,4,5}} {{1,2,3,4,5,6}} {{1,2},{1,2}} {{1,2},{3,4,5}} {{1,2,3},{1,2,3}} {{1,2},{3,4}} {{1,4},{2,3,4}} {{1,2},{3,4,5,6}} {{1,3},{2,3}} {{2,3},{1,2,3}} {{1,2,3},{4,5,6}} {{1,2,5},{3,4,5}} {{1,3,4},{2,3,4}} {{1,5},{2,3,4,5}} {{3,4},{1,2,3,4}} {{1,2},{1,2},{1,2}} {{1,2},{1,3},{2,3}} {{1,2},{3,4},{3,4}} {{1,2},{3,4},{5,6}} {{1,2},{3,5},{4,5}} {{1,3},{2,3},{2,3}} {{1,3},{2,4},{3,4}} {{1,4},{2,4},{3,4}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
Crossrefs
Programs
-
PARI
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)} permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} K(q, t, k)={WeighT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k)) - Vec(sum(j=1, #q, if(t%q[j]==0, q[j])) + O(x*x^k), -k)} a(n)={if(n==0, 1, my(s=0); forpart(q=n, my(g=sum(t=1, n, subst(x*Ser(K(q, t, n\t)/t),x,x^t) )); s+=permcount(q)*polcoef(exp(g), n)); s/n!)} \\ Andrew Howroyd, Jan 16 2024
Extensions
Terms a(11) and beyond from Andrew Howroyd, Sep 01 2019
Comments