A321711 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
1, 1, 0, 3, 0, 0, 11, 9, 0, 1, 53, 120, 60, 40, 9, 309, 1410, 1800, 1590, 885, 216, 2119, 16560, 39960, 55120, 52065, 29016, 7570, 16687, 202755, 801780, 1696555, 2433165, 2300403, 1326850, 357435, 148329, 2624496, 15606360, 48387024, 99650670, 141429456, 135382464, 79738800, 22040361, 1468457, 36080100, 304274880, 1323453180, 3760709526, 7493549868, 10570597800, 10199809980, 6103007505, 1721632024
Offset: 0
Examples
For n=3 we have s1 = z1 + z2 + z3, s2 = z1^2 + z2^2 + z3^2, s12 = z1*z2 + z1*z3 + z2*z3, f1 = z1^2 + z2^2 + z3^2 + t*z2*z3 + z1*(z2 + z3), f2 = z1^2 + z2^2 + z3^2 + t*z1*z3 + z2*(z1 + z3), f3 = z1^2 + z2^2 + z3^2 + t*z1*z2 + z3*(z1 + z2), [(z1*z2*z3)^2] f1*f2*f3 = 11 + 9*t + t^3, therefore P_3(t) = 11 + 9*t + t^3. A(x;t) = 1 + x + 3*x^2 + (11 + 9*t + t^3)*x^3 + (53 + 120*t + 60*t^2 + 40*t^3 + 9*t^4)*x^4 + ... Triangle starts: n\k [0] [1] [2] [3] [4] [5] [6] [7] [0] 1; [1] 1; 0; [2] 3; 0; 0; [3] 11, 9, 0, 1; [4] 53, 120, 60, 40, 9; [5] 309, 1410, 1800, 1590, 885, 216; [6] 2119, 16560, 39960, 55120, 52065, 29016, 7570; [7] 16687, 202755, 801780, 1696555, 2433165, 2300403, 1326850, 357435; [8] ...
Links
- Gheorghe Coserea, Rows n = 0..13, flattened
- Shmuel Friedland, Giorgio Ottaviani, The number of singular vector tuples and uniqueness of best rank one approximation of tensors, arXiv:1210.8316 [math.AG], 2013.
Programs
-
PARI
P(n, t='t) = { my(z=vector(n, k, eval(Str("z", k))), s1=sum(k=1, #z, z[k]), s2=sum(k=1, #z, z[k]^2), s12=(s1^2 - s2)/2, f=vector(n, k, s2 + t*(s12 - z[k]*(s1 - z[k])) + z[k]*(s1 - z[k])), g=1); for (i=1, n, g *= f[i]; for(j=1, n, g=substpol(g, z[j]^3, 0))); for (k=1, n, g=polcoef(g, 2, z[k])); g; }; seq(N) = concat([[1], [1, 0], [3, 0, 0]], apply(n->Vecrev(P(n,'t)), [3..N])); concat(seq(9))
Formula
Let z1..zn be n variables and s1 = Sum_{k=1..n} zk, s2 = Sum_{k=1..n} zk^2, s12 = (s1^2 - s2)/2, fk = s2 + t*(s12 - zk*(s1 - zk)) + zk*(s1 - zk) for k=1..n; we define P_n(t) = [(z1..zn)^2] Product_{k=1..n} fk.
A000255(n) = T(n,0).
A007107(n) = T(n,n).
A000681(n) = Sum_{k=0..n} T(n,k).
A274308(n) = Sum_{k=0..n} T(n,k)*2^k.