cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321711 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.

Original entry on oeis.org

1, 1, 0, 3, 0, 0, 11, 9, 0, 1, 53, 120, 60, 40, 9, 309, 1410, 1800, 1590, 885, 216, 2119, 16560, 39960, 55120, 52065, 29016, 7570, 16687, 202755, 801780, 1696555, 2433165, 2300403, 1326850, 357435, 148329, 2624496, 15606360, 48387024, 99650670, 141429456, 135382464, 79738800, 22040361, 1468457, 36080100, 304274880, 1323453180, 3760709526, 7493549868, 10570597800, 10199809980, 6103007505, 1721632024
Offset: 0

Views

Author

Gheorghe Coserea, Nov 27 2018

Keywords

Examples

			For n=3 we have s1 = z1 + z2 + z3, s2 = z1^2 + z2^2 + z3^2, s12 = z1*z2 + z1*z3 + z2*z3, f1 = z1^2 + z2^2 + z3^2 + t*z2*z3 + z1*(z2 + z3), f2 = z1^2 + z2^2 + z3^2 + t*z1*z3 + z2*(z1 + z3), f3 = z1^2 + z2^2 + z3^2 + t*z1*z2 + z3*(z1 + z2), [(z1*z2*z3)^2] f1*f2*f3 = 11 + 9*t + t^3, therefore P_3(t) = 11 + 9*t + t^3.
A(x;t) = 1 + x + 3*x^2 + (11 + 9*t + t^3)*x^3 + (53 + 120*t + 60*t^2 + 40*t^3 + 9*t^4)*x^4 + ...
Triangle starts:
n\k [0]    [1]     [2]     [3]      [4]      [5]      [6]      [7]
[0] 1;
[1] 1;     0;
[2] 3;     0;      0;
[3] 11,    9,      0,      1;
[4] 53,    120,    60,     40,      9;
[5] 309,   1410,   1800,   1590,    885,     216;
[6] 2119,  16560,  39960,  55120,   52065,   29016,   7570;
[7] 16687, 202755, 801780, 1696555, 2433165, 2300403, 1326850, 357435;
[8] ...
		

Crossrefs

Programs

  • PARI
    P(n, t='t) = {
      my(z=vector(n, k, eval(Str("z", k))),
         s1=sum(k=1, #z, z[k]), s2=sum(k=1, #z, z[k]^2), s12=(s1^2 - s2)/2,
         f=vector(n, k, s2 + t*(s12 - z[k]*(s1 - z[k])) + z[k]*(s1 - z[k])), g=1);
      for (i=1, n, g *= f[i]; for(j=1, n, g=substpol(g, z[j]^3, 0)));
      for (k=1, n, g=polcoef(g, 2, z[k]));
      g;
    };
    seq(N) = concat([[1], [1, 0], [3, 0, 0]], apply(n->Vecrev(P(n,'t)), [3..N]));
    concat(seq(9))

Formula

Let z1..zn be n variables and s1 = Sum_{k=1..n} zk, s2 = Sum_{k=1..n} zk^2, s12 = (s1^2 - s2)/2, fk = s2 + t*(s12 - zk*(s1 - zk)) + zk*(s1 - zk) for k=1..n; we define P_n(t) = [(z1..zn)^2] Product_{k=1..n} fk.
A000255(n) = T(n,0).
A007107(n) = T(n,n).
A000681(n) = Sum_{k=0..n} T(n,k).
A274308(n) = Sum_{k=0..n} T(n,k)*2^k.