cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321713 a(n) is the number of values k satisfying lambda(k)=n or zero if there is no solution, where lambda(k) is Carmichael's lambda function.

Original entry on oeis.org

2, 6, 0, 12, 0, 16, 0, 4, 0, 8, 0, 84, 0, 0, 0, 32, 0, 40, 0, 32, 0, 8, 0, 20, 0, 0, 0, 20, 0, 64, 0, 8, 0, 0, 0, 480, 0, 0, 0, 80, 0, 48, 0, 12, 0, 8, 0, 160, 0, 0, 0, 20, 0, 16, 0, 4, 0, 8, 0, 1216, 0, 0, 0, 8, 0, 64, 0, 0, 0, 16, 0, 872, 0, 0, 0, 0, 0, 24, 0, 160, 0, 8, 0, 532, 0, 0, 0, 52, 0, 120, 0, 12, 0, 0, 0, 424, 0, 0, 0, 100
Offset: 1

Views

Author

Gheorghe Coserea, Feb 21 2019

Keywords

Examples

			For n=12 there are a(12)=84 values N satisfying lambda(N)=12; the values are enumerated in A321714.
		

Crossrefs

Programs

  • PARI
    lambda(n) = { \\ A002322
      my(f=factor(n), fsz=matsize(f)[1]);
      lcm(vector(fsz, k, my(p=f[k,1], e=f[k,2]);
          if (p != 2, p^(e-1)*(p-1), e > 2, 2^(e-2), 2^(e-1))));
    };
    invlambda(n) = { \\ A270562
      if (n <= 0, return(0), n==1, return(2), n%2, return(0));
      my(f=factor(n), fsz=matsize(f)[1], g=1, h=1);
      for (k=1, fsz, my(p=f[k,1], e=1);
        while (n % lambda(p^e) == 0, e++); g *= p^(e-1));
      fordiv(n, d, if (isprime(d+1) && g % (d+1) != 0, h *= (d+1)));
      g *= h; if (lambda(g) != n, 0, g);
    };
    lambda_level(n) = {
      my(N = invlambda(n)); if (!N, return([])); my(s=List());
      fordiv(N, d, if (lambda(d) == n, listput(s, d)));
      Set(s);
    };
    a(n) = length(lambda_level(n));
    vector(100, n, a(n))
    
  • PARI
    b(n) = { \\ number of k satisfying lambda(k) | n
    my(R = 1);
    fordiv (n, d, if(isprime(d+1),
      my(e = 1); while(n % (d+1) == 0, n /= d+1; e++);
      if (d == 1 && e > 1, e++); R *= e+1));
    R
    };
    a(n) = if (n <= 0, 0, n == 1, 2, n % 2, 0, sumdiv(n, d, moebius(n/d) * b(d)));
    vector(100, n, a(n)) \\ Bertram Felgenhauer, Mar 27 2022