cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A321703 a(n) = 3*a(n-1) + 4*a(n-2) + a(n-3), a(0) = 1, a(1) = 1, a(2) = 5.

Original entry on oeis.org

1, 1, 5, 20, 81, 328, 1328, 5377, 21771, 88149, 356908, 1445091, 5851054, 23690434, 95920609, 388374617, 1572496721, 6366909240, 25779089221, 104377401344, 422615470156, 1711135105065, 6928244597163, 28051889681905, 113579782539432, 459875150943079, 1861996472668870, 7539069804318358, 30525070454573633, 123593487053663201, 500419812783602493
Offset: 0

Views

Author

Kai Wang, Jan 14 2019

Keywords

Comments

In general, let {X,Y,Z} be the roots of the cubic equation x^3 + ax^2 + xt + c = 0 where {a, b, c} are integers.
Let {u, v, w} be three numbers such that {u + v + w, u*X + v*Y + w*Z, u*X^2 + v*Y^2 + w*Z^2} are integers.
Then {p(n) = u*X^n + v*Y^n + w*Z^n | n = 0, 1, 2, ...} is an integer sequence with the recurrence relation: p(n) = -a*p(n-1) - b*p(n-2) - c*p(n-3).
Let k = Pi/7.
Let X = (sin(4k)*sin(8k))/(sin(2k)*sin(2k)),
Y = (sin(8k)*sin(2k))/(sin(4k)*sin(4k)),
Z = (sin(2k)*sin(4k))/(sin(8k)*sin(8k)).
Then {X,Y,Z} are the roots of the cubic equation x^3 - 3*x^2 - 4*x - 1 = 0.
This sequence: (a, b, c) = (3, 4, 1), (u, v, w) = (1/(sqrt(7)*tan(4k)), 1/(sqrt(7)*tan(8k)), 1/(sqrt(7)*tan(2k))).
A122600: (a, b, c) = (3, 4, 1), (u, v, w) = (1/(sqrt(7)*tan(2k)), 1/(sqrt(7)*tan(4k)), 1/(sqrt(7)*tan(8k))).
A321715: (a, b, c) = (3, 4, 1), (u, v, w) = (1/(sqrt(7)*tan(8k)), 1/(sqrt(7)*tan(2k)), 1/(sqrt(7)*tan(4k))).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(-1 + 2 x + 2 x^2)/(-1 + 3 x + 4 x^2 + x^3), {x, 0, 50}], x] (* Stefano Spezia, Jan 14 2019 *)
  • PARI
    Vec((1 - 2*x - 2*x^2) / (1 - 3*x - 4*x^2 - x^3) + O(x^30)) \\ Colin Barker, Jan 15 2019

Formula

G.f.: (-1 + 2*x + 2*x^2)/(-1 + 3*x + 4*x^2 + x^3). - Stefano Spezia, Jan 14 2019
Showing 1-1 of 1 results.