A321717 Number of non-normal (0,1) semi-magic rectangles with sum of all entries equal to n.
1, 1, 4, 8, 39, 122, 950, 5042, 45594, 366243, 3858148, 39916802, 494852628, 6227020802, 88543569808, 1308012219556, 21086562956045, 355687428096002, 6427672041650478, 121645100408832002, 2437655776358606198, 51091307191310604724, 1125098543553717372868, 25852016738884976640002, 620752122372339473623314, 15511210044577707470250243
Offset: 0
Keywords
Examples
The a(3) = 8 semi-magic rectangles: [1 1 1] . [1] [1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1] [1] [0 1 0] [0 0 1] [1 0 0] [0 0 1] [1 0 0] [0 1 0] [1] [0 0 1] [0 1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
Links
- Max Alekseyev, Table of n, a(n) for n = 0..71
- Wikipedia, Magic square
Crossrefs
Programs
-
Mathematica
prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}]; multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]]; Table[Length[Select[Subsets[Tuples[Range[n],2],{n}],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],SameQ@@Total/@prs2mat[#],SameQ@@Total/@Transpose[prs2mat[#]]]&]],{n,5}]
Formula
a(p) = p! + 2 for p prime. a(n) >= n! + 2 for n > 1. - Chai Wah Wu, Jan 13 2019
Extensions
a(7) from Chai Wah Wu, Jan 13 2019
a(8)-a(13) from Chai Wah Wu, Jan 14 2019
a(14)-a(15) from Chai Wah Wu, Jan 15 2019
a(16)-a(19) from Chai Wah Wu, Jan 16 2019
Terms a(20) onward from Max Alekseyev, Dec 04 2024
Comments