A321718 Number of coupled non-normal semi-magic rectangles with sum of entries equal to n.
1, 1, 5, 9, 44, 123, 986, 5043, 45832, 366300, 3862429, 39916803, 495023832, 6227020803, 88549595295, 1308012377572, 21086922542349, 355687428096003, 6427700493998229, 121645100408832003, 2437658338007783347, 51091307195905020227, 1125098837523651728389, 25852016738884976640003, 620752163206546966698620, 15511210044577707492319496
Offset: 0
Keywords
Examples
The a(3) = 9 coupled semi-magic rectangles: [3] [1 1 1] . [1] [1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1] [1] [0 1 0] [0 0 1] [1 0 0] [0 0 1] [1 0 0] [0 1 0] [1] [0 0 1] [0 1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
Links
- Max Alekseyev, Table of n, a(n) for n = 0..69
- Wikipedia, Magic square
Crossrefs
Programs
-
Mathematica
prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}]; multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]]; Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],SameQ@@Total/@prs2mat[#],SameQ@@Total/@Transpose[prs2mat[#]]]&]],{n,5}]
Formula
a(p) = p! + 3 for p prime. a(n) >= n! + 3 for n > 1. - Chai Wah Wu, Jan 15 2019
Extensions
a(7)-a(15) from Chai Wah Wu, Jan 15 2019
a(16)-a(19) from Chai Wah Wu, Jan 16 2019
Terms a(20) onward from Max Alekseyev, Dec 04 2024
Comments