A321721 Number of non-isomorphic non-normal semi-magic square multiset partitions of weight n.
1, 1, 2, 2, 4, 2, 7, 2, 10, 7, 12, 2, 38, 2, 21, 46, 72, 2, 162, 2, 420, 415, 64, 2, 4987, 1858, 110, 9336, 45456, 2, 136018, 2, 1014658, 406578, 308, 3996977, 34937078, 2, 502, 28010167, 1530292965, 2, 508164038, 2, 54902992348, 51712929897, 1269, 2, 3217847072904, 8597641914, 9168720349613
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the a(2) = 2 through a(6) = 7 multiset partitions: {{11}} {{111}} {{1111}} {{11111}} {{111111}} {{1}{2}} {{1}{2}{3}} {{11}{22}} {{1}{2}{3}{4}{5}} {{111}{222}} {{12}{12}} {{112}{122}} {{1}{2}{3}{4}} {{11}{22}{33}} {{11}{23}{23}} {{12}{13}{23}} {{1}{2}{3}{4}{5}{6}} Inequivalent representatives of the a(6) = 7 matrices: [6] . [3 0] [2 1] [0 3] [1 2] . [2 0 0] [2 0 0] [1 1 0] [0 2 0] [0 1 1] [1 0 1] [0 0 2] [0 1 1] [0 1 1] . [1 0 0 0 0 0] [0 1 0 0 0 0] [0 0 1 0 0 0] [0 0 0 1 0 0] [0 0 0 0 1 0] [0 0 0 0 0 1] Inequivalent representatives of the a(9) = 7 matrices: [9] . [3 0 0] [3 0 0] [2 1 0] [2 1 0] [1 1 1] [0 3 0] [0 2 1] [1 1 1] [1 0 2] [1 1 1] [0 0 3] [0 1 2] [0 1 2] [0 2 1] [1 1 1] . [1 0 0 0 0 0 0 0 0] [0 1 0 0 0 0 0 0 0] [0 0 1 0 0 0 0 0 0] [0 0 0 1 0 0 0 0 0] [0 0 0 0 1 0 0 0 0] [0 0 0 0 0 1 0 0 0] [0 0 0 0 0 0 1 0 0] [0 0 0 0 0 0 0 1 0] [0 0 0 0 0 0 0 0 1]
Links
- Wikipedia, Magic square
Crossrefs
Formula
a(p) = 2 for p prime corresponding to the 1 X 1 square [p] and the permutation matrices of size p X p with partition (1...10...0). - Chai Wah Wu, Jan 16 2019
a(n) = Sum_{d|n} A333733(d,n/d) for n > 0. - Andrew Howroyd, Apr 11 2020
Extensions
a(11)-a(13) from Chai Wah Wu, Jan 16 2019
a(14)-a(15) from Chai Wah Wu, Jan 20 2019
Terms a(16) and beyond from Andrew Howroyd, Apr 11 2020
Comments