cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321721 Number of non-isomorphic non-normal semi-magic square multiset partitions of weight n.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 7, 2, 10, 7, 12, 2, 38, 2, 21, 46, 72, 2, 162, 2, 420, 415, 64, 2, 4987, 1858, 110, 9336, 45456, 2, 136018, 2, 1014658, 406578, 308, 3996977, 34937078, 2, 502, 28010167, 1530292965, 2, 508164038, 2, 54902992348, 51712929897, 1269, 2, 3217847072904, 8597641914, 9168720349613
Offset: 0

Views

Author

Gus Wiseman, Nov 18 2018

Keywords

Comments

A non-normal semi-magic square multiset partition of weight n is a multiset partition of weight n whose part sizes and vertex degrees are all equal to d, for some d|n.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
Also the number of nonnegative integer square matrices up to row and column permutations with sum of elements equal to n and no zero rows or columns, with row sums and column sums all equal to d, for some d|n.

Examples

			Non-isomorphic representatives of the a(2) = 2 through a(6) = 7 multiset partitions:
  {{11}}   {{111}}     {{1111}}       {{11111}}         {{111111}}
  {{1}{2}} {{1}{2}{3}} {{11}{22}}     {{1}{2}{3}{4}{5}} {{111}{222}}
                       {{12}{12}}                       {{112}{122}}
                       {{1}{2}{3}{4}}                   {{11}{22}{33}}
                                                        {{11}{23}{23}}
                                                        {{12}{13}{23}}
                                                        {{1}{2}{3}{4}{5}{6}}
Inequivalent representatives of the a(6) = 7 matrices:
  [6]
.
  [3 0] [2 1]
  [0 3] [1 2]
.
  [2 0 0] [2 0 0] [1 1 0]
  [0 2 0] [0 1 1] [1 0 1]
  [0 0 2] [0 1 1] [0 1 1]
.
  [1 0 0 0 0 0]
  [0 1 0 0 0 0]
  [0 0 1 0 0 0]
  [0 0 0 1 0 0]
  [0 0 0 0 1 0]
  [0 0 0 0 0 1]
Inequivalent representatives of the a(9) = 7 matrices:
  [9]
.
  [3 0 0] [3 0 0] [2 1 0] [2 1 0] [1 1 1]
  [0 3 0] [0 2 1] [1 1 1] [1 0 2] [1 1 1]
  [0 0 3] [0 1 2] [0 1 2] [0 2 1] [1 1 1]
.
  [1 0 0 0 0 0 0 0 0]
  [0 1 0 0 0 0 0 0 0]
  [0 0 1 0 0 0 0 0 0]
  [0 0 0 1 0 0 0 0 0]
  [0 0 0 0 1 0 0 0 0]
  [0 0 0 0 0 1 0 0 0]
  [0 0 0 0 0 0 1 0 0]
  [0 0 0 0 0 0 0 1 0]
  [0 0 0 0 0 0 0 0 1]
		

Crossrefs

Formula

a(p) = 2 for p prime corresponding to the 1 X 1 square [p] and the permutation matrices of size p X p with partition (1...10...0). - Chai Wah Wu, Jan 16 2019
a(n) = Sum_{d|n} A333733(d,n/d) for n > 0. - Andrew Howroyd, Apr 11 2020

Extensions

a(11)-a(13) from Chai Wah Wu, Jan 16 2019
a(14)-a(15) from Chai Wah Wu, Jan 20 2019
Terms a(16) and beyond from Andrew Howroyd, Apr 11 2020