A321730 Number of ways to partition the Young diagram of an integer partition of n into vertical sections of the same sizes as the parts of the original partition.
1, 1, 1, 3, 8, 23, 79, 303, 1294, 5934, 29385, 156232, 884893
Offset: 0
Examples
The a(5) = 23 partitions of Young diagrams of integer partitions of 5 into vertical sections of the same sizes as the parts of the original partition, shown as colorings by positive integers: 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 . 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 3 1 3 2 1 3 1 3 1 2 3 3 2 2 3 3 2 3 2 3 3 2 3 1 1 3 3 . 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 3 3 2 3 3 3 3 3 3 1 4 3 2 4 3 4 4 4 4 1 4 4 2 4 3 4 . 1 2 3 4 5
Crossrefs
Programs
-
Mathematica
spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}]; ptnpos[y_]:=Position[Table[1,{#}]&/@y,1]; ptnverts[y_]:=Select[Join@@Table[Subsets[ptnpos[y],{k}],{k,Reverse[Union[y]]}],UnsameQ@@First/@#&]; Table[Sum[Length[Select[spsu[ptnverts[y],ptnpos[y]],Function[p,Sort[Length/@p]==Sort[y]]]],{y,IntegerPartitions[n]}],{n,5}]
Comments